
Understanding and Characterizing Obfuscated Funds
Transfers in Ethereum Smart Contracts

Zhang Sheng
Hefei University of Technology

China
dcszhang@foxmail.com

TAN Kia Quang
Singapore Management University

Singapore
kq.tan.2023@msc.smu.edu.sg

Shen Wang
Singapore Management University

Singapore
shenwang918@gmail.com

Shengchen Duan
Singapore Management University

Singapore
sc.duan.2024@phdcs.smu.edu.sg

Kai Li∗
San Diego State University

United States
kli5@sdsu.edu

Yue Duan†
Singapore Management University

Singapore
yueduan@smu.edu.sg

ABSTRACT

Scam contracts on Ethereum have rapidly evolved alongside
the rise of DeFi and NFT ecosystems, utilizing increasingly
complex code obfuscation techniques to avoid early detec-
tion. This paper systematically investigates how obfusca-
tion amplifies the financial risks of fraudulent contracts and
undermines existing auditing tools. We propose a transfer-
centric obfuscation taxonomy, distilling seven key features,
and design ObfProbe, a framework that performs bytecode-
level smart contract analysis to uncover obfuscation tech-
niques and quantify the level of obfuscation complexity via Z-
score ranking. In a large-scale study of 1.03 million Ethereum
contracts, we isolate over 3,000 highly obfuscated contracts
and discover two scam types, three high-risk contract types,
and MEV bots, that are deeply coupled with various obfus-
cation maneuvers such as assembly usage, dead code, and
deep function splitting. We further reveal that obfuscation
substantially increases the scale of financial damage and eva-
sion time. Finally, we evaluate SourceP, a state-of-the-art
Ponzi detection tool, on both obfuscated and non-obfuscated
samples, observing its accuracy to drastically fall from 80%
(non-obfuscated) to 12% (obfuscated) in real-world scenar-
ios. These findings underscore an urgent need for enhanced
“anti-obfuscation” analysis techniques and broader commu-
nity collaboration to mitigate scam contract proliferation in
the expanding DeFi ecosystem.

1 INTRODUCTION

Smart contracts, which are self-executing programs deployed
on blockchains, have been widely adopted recently. It has
enabled various significant emerging applications, such as
decentralized finance [8, 11, 68] and digital art trading [51].
Along with it, security issues are also on the rise. Recent re-
ports [26, 73] show that malicious smart contracts, including

∗Corresponding author
†Corresponding author

scams and MEV bots, have become increasingly prevalent,
resulting in significant financial losses. To address these
significant threats, researchers have proposed a variety of
techniques to detect [53, 54, 64] and analyze [23, 58] these
emerging security issues. These techniques rely mainly on
static program analysis [28] and rule-based matching [3],
which have been proven to be highly effective and efficient
in detecting early malicious smart contracts, which are typi-
cally straightforward and easily identifiable, such as transfers
to externally owned private account addresses.
As this arms race continues, malicious smart contracts

are gradually replaced by more covert, complex, and obfus-
cated contract logic [1]. Recent studies [74, 79] confirm that
obfuscation has become the primary means by which attack-
ers conceal genuine malicious transfer or backdoor control
logic, splitting functions, adding redundant instructions, us-
ing assembly code, and other obfuscation techniques. When
attackers employ these obfuscation techniques in their mali-
cious smart contracts, the static analysis and matching rules
adopted by traditional detection tools are often disrupted,
leading to high detection inaccuracies [57, 80] and further
worsening financial losses [24, 70, 72, 81].

Although obfuscation techniques are witnessed to be in-
creasingly employed in smart contracts to evade security
analysis and have been linked to substantial financial losses,
no comprehensive study has yet been conducted to system-
atically assess their impact in real-world scenarios — an
understanding that is critical for the development of effec-
tive defense mechanisms and the mitigation of associated
security risks. In this paper, we report the first systematic
study on the obfuscation of funds transfer operations, which
are the most essential and security-critical activities of a
smart contract [46].
Specifically, we aim to thoroughly understand the status

quo of obfuscated funds transfer operations in Ethereum
smart contracts by answering the following four essential
research questions:

1

ar
X

iv
:s

ub
m

it/
64

45
69

9
 [

cs
.C

R
]

 1
6

M
ay

 2
02

5

Zhang Sheng, TAN KiaQuang, Shen Wang, Shengchen Duan, Kai Li, and Yue Duan

• RQ1 Definition:What code obfuscation techniques are
used for funds transfers in smart contracts, and how can
they be defined and quantified?

• RQ2 Prevalence: How prevalent are obfuscated funds
transfers in the real world, and what is the current trend
regarding the use of obfuscation techniques?

• RQ3 Financial Impact: What are the consequences of
using these techniques in malicious smart contracts with
respect to economic impact?

• RQ4 Impact on Malware Analysis: Can state-of-the-art
malicious contract detection tools maintain the same level
of effectiveness when faced with heavily obfuscated funds
transfers?

To answer the aforementioned research questions, we sys-
tematically develop a taxonomy to define and characterize
different obfuscation techniques on funds transfer opera-
tions and propose ObfProbe, an EVM bytecode analysis
tool that can accurately uncover how different obfuscation
techniques manifest in real-world smart contracts. With the
help of this analysis framework, we conduct a series of com-
prehensive studies on a huge real-world dataset of 1,042,928
smart contracts.

Here we highlight some interesting discoveries:

(1) Our analysis framework ObfProbe identified 3,128 highly
obfuscated contracts in the wild. Within them, 153 con-
tracts harbor substantial security risks, placing user funds
totaling close to $100 million at risk.

(2) Compared to non-obfuscated samples, obfuscated scam
contracts demonstrate a significantly larger financial im-
pact, with their highest recorded inbound funds being
roughly 2.4 times greater and clear periods of intensified
victimization occurring between 2019 and 2023.

(3) Deep obfuscation can seriously undermine existing detec-
tion mechanisms (e.g., the accuracy of a state-of-the-art
Ponzi detector drops from 79% to 12% when applied to
obfuscated code).

Contributions. The contributions of this paper are summa-
rized as follows:

• We developed ObfProbe, the first EVM bytecode obfus-
cation analyzer leveraging seven bytecode-level features
and a Z-score representation model to detect obfuscated
transfer logic automatically.

• We performed the first large-scale measurement study on
more than 1.04 million Ethereum smart contracts, reveal-
ing that 0.3% exhibit complicated obfuscation and catego-
rizing three major threat contexts: MEV bots, traditional
scam tokens, and highly centralized permission wrappers.

• We quantified the impact of obfuscation on financial dam-
age and detection: obfuscated contracts can extract up to

201.74 ETH per scam and trigger significant victim out-
breaks, while state-of-the-art detectors suffer a decrease in
accuracy from 79% to under 12% under deep obfuscation.

• We open-sourced the implementation of our prototype
and all study data/artifacts to facilitate future research1.

2 BACKGROUND

2.1 Blockchain and Smart Contracts

Blockchain, a technology with a decentralized distributed
ledger at its core, ensures data security and immutability
through cryptographic methods, making it a foundational
infrastructure for various data transactions [4]. Its core fea-
tures—decentralization, transparency, immutability, and se-
curity—position it as a transformative technological innova-
tion across a wide range of industries [65].

Smart contracts are programs built on top of blockchains
that autonomously execute contractual terms when prede-
fined conditions are satisfied, eliminating the need for inter-
mediaries [50]. Smart contracts offer several key advantages,
including reduced transaction costs, enhanced efficiency, and
a lower risk of human error. By permanently recording exe-
cution results and data on the blockchain, they eliminate the
possibility of unilateral alteration, thereby ensuring fairness
and transparency in contract execution [52]. Smart contracts
have been widely applied in various fields, including finan-
cial transactions, identity verification, supply chain man-
agement, and insurance [59]. In the financial sector, smart
contracts facilitate automatic settlement and payment on the
blockchain, significantly enhancing transaction efficiency
and transparency while reducing the need for intermedi-
aries and human involvement. As blockchain technology
evolves, smart contracts will play an increasingly important
role across multiple industries [65].

2.2 Code Obfuscations

Code obfuscation is the process of transforming a program
into an equivalent version that preserves its semantics but
significantly impedes human understanding and automated
analysis. Originating in the late 1990s as a software-protection
technique, obfuscation now finds applications both in legiti-
mate software-protection (e.g. DRM, piracy resistance) and
in malware-evasion (hindering static and dynamic analysis).
While no obfuscation can guarantee unbreakable protec-
tion, carefully designed transformations raise the attacker’s
cost—forcing reverse engineers to invest more time, special-
ized tools, or human effort to recover the original logic.
Research over the past years continues to refine a tax-

onomy of obfuscation techniques, typically grouped into
control-flow obfuscation, data obfuscation, layout (lexical)

1https://github.com/dcszhang/Obfuscation_Tool
2

Understanding and Characterizing Obfuscated Funds Transfers in Ethereum Smart Contracts

obfuscation, and instruction substitution. Control-flow ob-
fuscation aims to alter the program’s control-flow graph
(CFG) without changing semantics, employing opaque predi-
cates, bogus branches, control-flow flattening (e.g. dispatcher
loops) or virtualization-based transformations that compile
sensitive code into custom bytecode (e.g. VMProtect) [34, 56].
Data obfuscation focuses on concealing computation logic
by encoding variables, splitting values, or applying mixed
Boolean-arithmetic (MBA) expressions that rewrite simple
operations into complex algebraic equivalents—a method
effective against pattern-based decompilers and symbolic
engines but sometimes simplified by compiler optimizations
[37]. Layout obfuscation modifies non-functional code as-
pects such as renaming identifiers, stripping or reordering
symbols and functions, and inserting NOPs or dummy code;
albeit low-cost, such lexical changes provide limited pro-
tection if used alone [10]. Instruction substitution replaces
code sequences with semantically equivalent but syntacti-
cally distinct alternatives— for instance, unrolling multipli-
cations into shift-add sequences or recasting boolean logic
into arithmetic forms—to diversify byte patterns and defeat
signature-based analysis and metamorphic malware detec-
tion [56].

3 TAXONOMY OF OBFUSCATED FUNDS

TRANSFERS

In this paper, we primarily focus on funds transfer oper-
ations, which are the most essential and security-critical
activities of a smart contract [46]. To answer RQ1 and fur-
ther conduct our study, we develop a taxonomy to define
and characterize different obfuscation techniques on funds
transfer operations, based on how each component of funds
transfer operations can be hidden, derived from our deep
domain knowledge of Ethereum smart contracts.

Our taxonomy development starts by dissecting every el-
ement of the funds transfer operation. The standard way to
realize such an operation is through a transfer API CALL
in Solidity [62], which is implemented as a CALL EVM op-
code in a given smart contract bytecode. Specifically, we
define a CALL EVM opcode that implements a funds transfer
operation as follows:
Definition 1. A CALL EVM opcode that implements a

funds transfer operation can be defined as

𝑇 = (𝑎𝑑𝑑𝑟, 𝑣𝑎𝑙𝑢𝑒, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑙𝑜𝑔),𝑤ℎ𝑒𝑟𝑒 : (1)

• addr determines the recipient address of the fund. This is
the target address specified in the CALL instruction (a 20-byte
Ethereum address).

• value is the non-zero value in wei transferred to the
addr. This value represents the amount of native Ethereum
tokens sent in the transfer.

• context is the execution context of the funds transfer
operation, which includes the storage state of the contract,
the remaining instructions and control/data flow inside the
function where the transfer is located. It together determines
whether and how the CALL instruction can be executed.

• log refers to the collection of events generated by the
CALL operation during the transaction execution. This in-
cludes event signatures (topics) and data fields (data), which
provide semantic information regarding the transfer and are
useful for auditing and monitoring on-chain activities.

Based on our definition of a funds transfer operation, we
investigate each element and derive seven obfuscation strate-
gies. By exhaustively mapping each strategy to one or more
elements of a funds transfer operation, we ensure our taxon-
omy is comprehensive and covers all fundamental ways to
hide transfer operations in Ethereum smart contracts.

Please note that the source code listings below are for illus-
tration purposes, while our analysis is done at the bytecode
level.

3.1 Obfuscation of addr
The addr element, which is essentially a string that repre-
sents a 20-byte Ethereum address, indicates the recipient
address of a funds transfer operation. We consider four ob-
fuscation methods, stemming from traditional string obfus-
cation techniques [49].
T1. Multi-step Address Generation. The address is de-
rived through a sequence of external reads, arithmetic/bit-
wise operations, or import from another contract, preventing
straightforward identification of the actual 20-byte recipient.
1 // Step 1: derive seed from block data

2 bytes32 seed = keccak256 (...);

3 // Step 2: extract intermediate bytes

4 bytes20 part = bytes20(seed);

5 // Step n......

6 // compute recipient address

7 address rec = address (...(uint256(part)));

8 // core transfer

9 rec.transfer{value ,...}("");

Listing 1: T1. Multi-step Address Generation

T2. Complex String Operations. The address is split into
multiple substrings or byte segments stored separately. These
segments are then concatenated at runtime to reconstruct
the true addr, concealing it from static parsers.
1 // split address string into parts

2 string memory s1 = "0x";

3 string memory s2 = "a1b2c3";

4 string memory s3 = "d4e5f6";

5 // concatenate at runtime

6 string memory full = string(s1, s2, s3);

7 // parse back to address

3

Zhang Sheng, TAN KiaQuang, Shen Wang, Shengchen Duan, Kai Li, and Yue Duan

8 address rec = parseAddr(full);

9 rec.transfer{value ,...}("");

Listing 2: T2. Complex String Operations

T3. External Contract Calls. Instead of local computation,
the contract with obfuscation may choose to query a “router”
or “delegate” contract to fetch addr, hiding the true recipient
behind an external CALL.

1 interface AddrPro {

2 function getAddr () external returns (address);

3 }

4 // fetch hidden address from another contract

5 address provider = 0x1234 ...;

6 address rec = AddrPro(provider).getAddr ();

7 rec.transfer{value: value }("");

Listing 3: T3. External Contract Calls

T4. Control-flow complexity. Dynamic conditions (e.g.,
block.timestamp) select among multiple branches—some
dead—each leading to different addresses. This conditional
complexity obscures which branch yields the actual addr.

1 address rec;

2 if (block.timestamp % 3 == 0) {

3 for (uint i = 0; i < 2; i++) {

4 if (i == 1) {

5 if (msg.sender == owner) {

6 rec = addrA;

7 } else {

8 rec = addrB;

9 }

10 }

11 }

12 } else {

13 rec = addrC;

14 }

15 rec.transfer{value: value }("");

Listing 4: T4. Control-flow Complexity

3.2 Obfuscation of value
Since value is the amount transferred in wei, i.e., a 256-bit
unsigned integer. Therefore, two obfuscation strategies from
addr can be applied.
T3. External Contract Calls. Similar to addr, the transfer
amount can also be fetched from an external contract, rather
than stored locally, complicating static quantity analysis.
T4. Control-flow complexity. value is determined by con-
ditional logic or loops, introducing multiple potential num-
bers and obscuring the true transfer amount.

3.3 Obfuscation of context
The context element comprises (i) the contract’s storage
state, (ii) the internal instructions and control/data flow of
the function in which the funds transfer operation resides.
Smart contract developers can choose to obfuscate context
to cloak the real intent of funds transfer operations. We
outline two unique techniques below to obfuscate context.
1 // meaningless loop

2 for (uint i = 0; i < 5; i++) {

3 uint tmp = i * 42;

4 }

5 // no-op arithmetic

6 uint x = (1 + 2) - 3;

7 // core transfer hidden among noise

8 address rec = 0xAbCd ...;

9 rec.transfer{value ,...}("");

Listing 5: T5. Camouflage Instructions

T5. Camouflage Instructions. By injecting large numbers
of meaningless loops, arithmetic operations, and No-ops into
the transfer-related function body, the core CALL is cam-
ouflaged with many irrelevant instructions. Although the
transfer is still executed correctly, the altered control and
data flow within the function make it hard for static analysis
tools to isolate the actual CALL context.
T6. Replicated Transfer Logic. Smart contract develop-
ers can duplicate identical or highly similar transfer log-
ics across multiple functions that only differ in names (e.g.,
withdraw and start) or trivial execution paths. Hence, the
contract selector randomly dispatches the CALL at runtime.
This multiplies potential entry points and confuses analysis
tools regarding which function’s context truly carries out
the transfer.
1 function withdraw(uint value) public {

2 _doTransfer(value);

3 }

4 function start(uint value) public {

5 _doTransfer(value);

6 }

7 function _doTransfer(uint value) internal {

8 // same transfer code reused

9 address rec = 0xAbCd ...;

10 rec.transfer{value ,...}("");

11 }

Listing 6: T6. Replicated Transfer Logic

3.4 Obfuscation of log
Finally, log keeps a record and provides a semantic-level
understanding of what has happened during the execution.
Developers can choose to obfuscate the semantic signals in
Log with the following technique.

4

Understanding and Characterizing Obfuscated Funds Transfers in Ethereum Smart Contracts

T7. Irrelevant Log Events. One can emit misleading or
unrelated events (e.g., logging a transfer to a “legitimate” ad-
dress while sending funds elsewhere), diverting auditors’ and
tools’ attention, concealing the real log data that corresponds
to the transfer.
1 event Info(string msg);

2 // misleading log before transfer

3 emit Info("Sending to safe address");

4 address rec = 0xAbCd ...;// unsafe address

5 rec.transfer{value ,...}("");

Listing 7: T7. Irrelevant Log Events

4 SYSTEM DESIGN AND

IMPLEMENTATION

Building on the taxonomy, we design and implement an
EVM bytecode analysis tool named ObfProbe to uncover
how different obfuscation techniques manifest in real-world
smart contracts so as to answer our RQ2. In this section, we
elaborate on the design and implementation of our system.

4.1 System Overview

Figure 1 shows an overview of ObfProbe. At a high level, it
first converts a given smart contract bytecode to the static
single assignment intermediate representation (SSA IR) us-
ing an existing tool named Rattle [14]. After that, it scans
the IR to detect all funds transfer operations (stage 1). For
each transfer, our system extracts seven pre-defined obfus-
cation features from the SSA IR (stage 2). Finally, it applies
a Z-score representation model [15], which is a numerical
value that represents a data point’s distance from the mean
in terms of standard deviations, to convert the extracted fea-
tures to an obfuscation score (stage 3), indicating the degree
of obfuscation applied to the transfer operation.

4.2 Definition and Extraction of

Obfuscation Features

For each of the aforementioned seven obfuscation strategies,
we define a corresponding obfuscation feature, as summa-
rized in Table 1.
F1. Number of steps in address generation. This feature
represents the number of steps required to obtain addr in
a transfer operation. Specifically, starting from each CALL
operation in the contract’s SSA IR, we perform backward
dataflow analysis on the variable address to trace its gen-
eration process. Each arithmetic operation, hash function
invocation, bitwisemanipulation, and external call is counted
as one distinct step. Finally, we consolidate linear operations
within each basic block to avoid overcounting trivial opera-
tions and count the number of steps for address generation
as a numerical feature F1.

F2. Number of string operations. String operations (e.g.,
concatenation, hashing, slicing, and encoding) contribute to
obfuscation. To quantify the level of complexity in string
operations involved in the address generation process, we
again analyze the data flow of the variable address to count
all instructions involving string manipulations, including
both built-in string operations and hash operations. We then
count the number of string operations for address generation
as a numerical feature F2.
F3. Presence of external call. To determine if the genera-
tions of addr and value involve any external call, we inspect
the dataflow of both and check if there exists any external
call (i.e., (CALL, DELEGATECALL, or STATICCALL)). If so, we
set a binary feature F3 to TRUE. Otherwise, it is set to FALSE.
F4. Height of branch tree.We use the height of the branch
tree to represent the complexity of the control flow associ-
ated with the transfer operation by analyzing conditional
branch structures (JUMPI instructions). Starting from the
identified transfer operation, we trace backward to traverse
all conditional branches. The height of the branch tree is
calculated as the maximum nesting depth traversed.
F5. Transfer-related instruction ratio (TIR). This feature
quantifies the ratio of effective instructions contributing to
a transfer operation in the residing function. To this end, we
define Transfer-related Instruction Ratio (TIR) as follows. Let
|𝑈 | be the number of effective instructions contributed to
transfers and critical state updates, and |T| be the total num-
ber of instructions in the transfer-residing function. Then,
TIR is computed as:

TIR =
|𝑈 |
|T| , (2)

Specifically,𝑈 is the union of critical transfer instructions
𝐶 and state modifications 𝑆 . 𝐶 is obtained from the func-
tion’s program dependence graph (PDG) by considering all
instructions directly related to the transfer logic (e.g., CALL,
parameter calculations, state validation). 𝑆 is from parsing
the function to detect SSTORE operations and retaining only
those updating parameters related to transfers (e.g., address,
value). Consequently, a low TIR implies that a large portion
of the code in a transfer-residing function does not affect
how the transfer operation is performed, indicating signifi-
cant obfuscation designed to dilute and hide the contract’s
true transfer logic.
F6. Transfer operation similarity. This feature quantifies
whether a contract replicates the same transfer logic across
multiple functions. To calculate this, we construct a PDG,
including information from both control and data dependen-
cies, for each function containing a transfer operation. Then,
we embed the nodes of each PDG using a Word2Vec model
and further employ a Relational Graph Convolutional Net-
work (R-GCN) [55] to aggregate the node embeddings and

5

Zhang Sheng, TAN KiaQuang, Shen Wang, Shengchen Duan, Kai Li, and Yue Duan

Figure 1: Overview of ObfProbe.

Table 1: Summary of Transfer-related Obfuscation Features

Obfuscation Strategies Extracted Features

T1. Multi-step address generation F1. Number of steps in the addr generation
T2. Complex string operations F2. Number of string operations in the addr generation
T3. External contract calls F3. Presence of an external contract call in the addr/value generation
T4. Control-flow complexity F4. Max branch/loop nesting depth in address/value derivation.
T5. Camouflage instructions F5. Transfer-related instruction ratio (TIR)
T6. Replicated transfer logic F6. Inter-function code similarity of transfer-containing functions
T7. Irrelevant log events F7. Relevance between the semantics of the log event and the transfer operation

edge relations into a single vector representation for each
function’s subgraph. Finally, we compute pairwise cosine
similarity between these vector representations across all
transfer-containing functions and use this similarity score as
a numerical feature F6. A high similarity score indicates that
there exist two transfer-containing functions that exhibit
highly similar transfer logic.
F7. Relevance of log events. To detect misleading and ir-
relevant log events emitted during transfer operations, we
identify emit operations within two hops in the CFG from
the node representing the transfer operation. If an emit op-
eration is identified, we employ the Foundry fuzzing frame-
work [43] to execute the corresponding function and capture
the emitted logs at runtime. After that, we perform an au-
tomated semantic analysis using GPT-4o [2] to determine
whether the log messages are relevant to the transfer opera-
tion. If the relevance score is low (e.g., referencing a different
recipient or transaction type), we set the feature to FALSE.
Otherwise, the feature is set to TRUE.
Overall, we believe the above seven bytecode-level fea-

tures can allow us to effectively identify obfuscated transfer-
related functions in smart contracts.

4.3 Obfuscation Z-score Model

Upon extracting the seven obfuscation features, we calculate
an Obfuscation Z-score as a quantitative metric to represent
the degree of obfuscation applied to transfer operations. In
particular, we calculate the cumulative distance between
each feature’s standard deviation and mean, and further com-
pute a weighted sum to obtain the obfuscation Z-score for
each contract:

𝑍score =

7∑︁
𝑖=1

𝑥𝑖 − 𝜇𝑖

𝜎𝑖
, (3)

where 𝑥𝑖 is the 𝑖-th feature value for a given contract,
and 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of the
corresponding feature across the entire sample set.

This Z-score represents the cumulative distance between
the values of all seven obfuscation features and their means
in standard deviations, indicating the degree of obfuscation
applied to the transfer operation for a given smart contract.

4.4 Evaluation of ObfProbe

We evaluate the performance of ObfProbe on a dataset
of 453 Ponzi scam contracts. Table 2 summarizes the data
sources and our manual classification.
To evaluate the effectiveness of ObfProbe, we compile

these 453 contracts to obtain their bytecode and applyObfProbe
to get the values of the seven obfuscation features as well

6

Understanding and Characterizing Obfuscated Funds Transfers in Ethereum Smart Contracts

Table 2: Real-world Ponzi Scam Dataset

Data Source CRGB [35] 137
SourceP [39] 316

Total 453

Classification Obfuscated 92
Non-Obfuscated 361

Figure 2: Z-score Distribution

as the Z-scores. We manually confirm that the values of the
seven obfuscation features are all correct, indicating 100%
accuracy of our bytecode analysis over the Ponzi dataset.
Furthermore, we examine the distribution of the two groups’
Z-scores, which is presented in Figure 2. As shown, the mean
Z-score of the obfuscated group is significantly higher than
that of the non-obfuscated group, and its standard deviation
is also larger. This indicates that obfuscated contracts exhibit
greater diversity and concealment.
In addition, we conduct a more detailed statistical inves-

tigation, shown in Table 3. The results show that the differ-
ence between the Z-score distributions of the two groups is
statistically significant (t = -6.172, 𝑝 ≈ 0), confirming that
ObfProbe can effectively distinguish obfuscated contracts
from non-obfuscated contracts by using Z-scores.

Table 3: Z-score Statistics

Obfuscation Count Mean Std Min Max

Non-Obfuscated 361 4.571 0.641 2.581 5.261
Obfuscated 92 6.888 3.587 4.688 26.456

Welch’s t-test t = -6.172, p = 0.000000

In summary, the evaluation result shows that ObfProbe
can accurately extract the pre-defined obfuscation features
and calculate the Z-scores, which can effectively differentiate
obfuscated and non-obfuscated smart contracts.

5 REAL-WORLD STUDY

In this section, we aim to answer RQ2 to study the prevalence
of obfuscation techniques in smart contracts.

5.1 Prevalence Study

To conduct the study, we collect 1,042,923 smart contract
bytecodes deployed on the Ethereummainnet spanning from
Jun 2022 to Oct 2024, and then leverage ObfProbe to extract
the seven obfuscation features from these contracts as well
as to calculate their Z-scores. Next, we examine the top 0.3%
most heavily obfuscated contracts to identify key hidden be-
haviors and their intrinsic obfuscation mechanisms. Finally,
we present three case studies, namely MEV bot contracts,
scam contracts, and extremely centralized contracts, to illus-
trate representative obfuscation strategies.

Figure 3: The Z-score Distribution on the Ethereum

Mainnet. The dashed red linemarks the top 0.3% cutoff.

Distribution of Z-Score. Figure 3 shows that the distribu-
tion of the aggregate obfuscation score z_total is strongly
right-skewed. Most contracts fall in the range 3 ≲ 𝑍 ≲ 8,
with a peak near 𝑍 ≈ 6. For 𝑍 > 10, the bar heights de-
cline steadily, forming a long tail that extends to the highest
observed scores. This visual pattern indicates that while
most contracts exhibit moderate obfuscation, a small subset
reaches much higher levels.

Table 4: Zscore Statistics

Metric Value

Count (contracts) 1,042,923
Mean 5.867
Std 2.910
Min 1.698
Max 46.264

Table 4 summarizes the distribution of the aggregate obfus-
cation score (z_total) across 1,042,923 contracts. To exam-
ine the prevalence of obfuscated contracts, we use a Z-score

7

Zhang Sheng, TAN KiaQuang, Shen Wang, Shengchen Duan, Kai Li, and Yue Duan

threshold of 4.637 derived from real-world data in Table 2
and represents the 95% CI upper bound, calculated as

4.571 + 𝑡0.975,360 ×
0.641
√
361

≈ 4.637. (4)

Table 5: Prevalence of Obfuscated Smart Contracts

Category Count Percentage

Above Threshold (>4.637) 739,763 70.93 %
Below Threshold (<4.637) 303,160 29.07 %

Applying this cutoff, Table 5 reveals that 70.93% of on-
chain contracts deploy obfuscation at or above what would
be considered a “normal” level. More than two-thirds of
deployed contracts exceed the non-obfuscated CI ceiling,
demonstrating that obfuscation has become a routine prac-
tice in smart contract development. This pervasive adop-
tion underscores the need for more robust analysis tools
and transparency mechanisms to manage obfuscation in the
Ethereum ecosystem.

5.2 Detailed Analysis

To better understand how obfuscation techniques are used
in the wild, we select the top 0.3% (3,128 contracts) as highly
suspicious targets for in-depth analysis. We empirically set
a 0.3% threshold based on two considerations. First, in sta-
tistics, if a variable is approximately normally distributed,
roughly the rightmost 0.3% of the samples typically corre-
spond to extreme outliers [13, 31, 71] (i.e., values exceeding
approximately three standard deviations from the mean).
Therefore, the tail region corresponding to about 3𝜎 is com-
monly regarded as highly suspicious and requires priority
auditing. Second, selecting the top 3,000+ samples out of
1.04 million contracts significantly reduces our manual ef-
forts while still adequately covering the typical values of the
distribution. Thus, choosing 0.3% satisfies both the need to
focus on the most extreme suspicious cases and to maintain
a reasonably feasible auditing scale. In summary, selecting
0.3 % as the high-suspicion interval does not imply that we
assume the data strictly follows a normal distribution; rather,
it leverages a general empirical value from the extreme tail
of a normal distribution to provide an intuitive and relatively
reasonable cutoff for prioritizing contracts with extremely
high obfuscation.
To this end, we sort these contracts by the total amount

of influx funds and examine each contract from the top. Our
study uncovers that all of them are indeed equipped with
obfuscation techniques, and 153 contracts pose very high
risks by hiding four potentially malicious and suspicious
behaviors via heavy obfuscation, jeopardizing 100M USD

worth of Ethers. We present case studies for the four mali-
cious behaviors hidden under obfuscation and elaborate on
their typical hidden strategies.

5.3 Case I: MEV Bots

Due to different exchange rates across multiple decentral-
ized exchanges (DEXs), various arbitrage opportunities exist.
MEV bot contracts are thus developed and deployed to ex-
ploit the opportunities and gain profits with techniques such
as front-running [77], back-running [41], and sandwich at-
tacks [42]. Our study finds that some MEV bot contracts
leverage heavily obfuscated to hide their profit-making logic
and thwart analysis. Our analysis of the highly obfuscated
MEV bot contracts reveals four unique strategies.

(1) Fallback only. Under this strategy, MEV bot contracts
only implement the fallback functions to parse the call-
data, which then jump to the corresponding location to
continue the execution. Eliminating the 4-byte function
selectors poses additional challenges for static analysis,
such as function identification and call graph generation.
The code typically features numerous SWAP and JUMPI
pseudo-branches. This strategy is highly relevant to F3
and F4 features in Table 1 because the fallback function
typically relies on external calls to handle calldata and
uses conditional branches to increase the complexity.

(2) ABI distortion. Some MEV bots manipulate function se-
lectors by shortening or relocating them within calldata,
making it difficult to identify entry points of the contract.
This strategy is relevant to F1, F2, and F4 features because
(1) it results in complex address generation processes, in-
volving multiple steps; (2) manipulating ABI elements
involves string operations like concatenation or hashing;
and (3) it may introduce additional control flow complexity
by introducing branching.

(3) Address obfuscation. This method uses operations like
PUSH4, PUSH4, and XOR to reconstruct the beneficiary ad-
dress, and requires precisely-length calldata inputs, im-
mediately reverting on mismatch. It is related to features
F1 and F2 in that it introduces multiple steps to dynam-
ically construct the transfer address and sometimes in-
volves string manipulations. Moreover, our observation
shows that it often introduces many irrelevant instruc-
tions, reducing the proportion of transfer-related instruc-
tions. Hence, it is also directly related to F6.

(4) Runtime constraints. This strategy introduces condi-
tional branches based on chain-specific variables (e.g.,
block.coinbase), preventing frontrunning in the public
mempool by directing different logic flows depending on
the block builder. We find that this strategy is related
to F4 and F7 features since it will introduce additional

8

Understanding and Characterizing Obfuscated Funds Transfers in Ethereum Smart Contracts

conditional branches in the control flow and often emits
irrelevant or misleading logs.

Arbitrage transactions of MEV bots. To gain more in-
sights into the impact of different obfuscation strategies
adopted by MEV bots, we select one representative MEV
bot contract for each strategy and analyze its transaction
activity. We can draw several interesting observations from
a time series analysis of arbitrage transactions submitted
to each MEV bot, which is presented in Figure 4. Notably,
the fallback-only bot spikes to peak throughput (≈ 100 000
transactions) early in the period before abruptly dropping to
zero, indicating a narrow exploitation window. In contrast,
the ABI distortion contract ramps up gradually and sustains
high volumes, while runtime constraint and address obfus-
cation strategies show slower growth and greater variability
in transaction counts.

5.4 Case II: Ponzi Schemes

Ponzi contracts encourage users to deposit funds or purchase
specific tokens by claiming high yield returns through au-
tomatic buybacks and burns, compounded mining, or cross-
platform arbitrage. Then, they force participants to hold the
tokens, implement multi-level commission systems, and rely
on new funds from subsequent investors to support returns
for earlier participants [21], exhibiting classic Ponzi charac-
teristics. When additional funds fall short, the project creator
dumps tokens to reap enormous profits, triggering a collapse
of the system and causing losses for participants [40].
Obfuscation strategies. Here, we use yUSDC contract, an
obfuscated Ponzi contract detected by ObfProbe, to exem-
plify how the contract obfuscates the logic of forcing token
holding, implementing buyback and burn mechanisms, and
using multi-layered function wrappers.
• Multi-level deduction and address generation. When users
withdraw tokens, there is a cumbersome fee deduction
process involving parameters such as devTreasury, ref-
Bonus, and buyNBurn.ObfProbe performs backward slic-
ing from transfer operations and detects an obfuscated
computational process. Furthermore, we see that the owner
controls these parameter configurations and can adjust
them at will.

• Layered Logic Based on External Inputs (Referral/Down-
lines). We identify a recruitment mechanism in the con-
tract, which is a multi-level data structure. This indicates
that user returns do not come from the contract’s own
operations, but are instead distributed from the funds of
new investors.

• Abundant "Buyback and Holding Check" Strings/Events.
By analyzing event names or string constants, ObfProbe
detects terms like “Burn”, “MLMReward”, or “Retiremen-
tYeld”. These words are typically associated with forced

token holding, token burning, or multi-level commissions,
typical keywords of Ponzi/pyramid schemes.
Overall, we observe that Ponzi scam contracts leverage

heavy obfuscation techniques to hide their core malicious
logic to avoid detection.

5.5 Case III: Fake Decentralization

This type of contract claims that the control of the contract
is decentralized to attract participation, while maintaining
obfuscated backdoor functions that allow owners to con-
trol the contract. Our study shows that two components are
used to implement its malicious logic. The first one is called
fake renouncement of ownership. Specifically, the con-
tract claims that executing the renounceOwnership() can
remove the centralized ownership. However, the function
merely transfers the ownership to another address under the
project owner’s control or simply does nothing except emit
a seemingly correct log to deceive participants. The second
component is malicious backdoors, which are obfuscated
functions (e.g., Failsafe or Emergency). They are claimed
to handle system crashes, but in fact allow the project owner
to withdraw assets at any time, resulting in financial losses
to participants.
Obfuscation strategies. Through our detection and inves-
tigation, we see the contracts adopt three obfuscation strate-
gies. First, the contract duplicates ownership transferring
logic in multiple functions, which only differ in parame-
ter names or variable names, to increase code complexity
and hinder static analysis and manual auditing. Second, the
contract often hides its core logic by inserting many empty
and useless code segments, making it difficult for auditors
to quickly pinpoint the core backdoor. Third, the contract
publicly claims that “control has been relinquished,” while
the onlyOwner modifier remains effective. Alternatively, it
may contain a function (e.g., _transferOwnership(addr)),
where addr is an address controlled by the owner, then the
actual control is still maintained.

5.6 Case IV: Extreme Centralization

Contracts in this category share a common design principle:
all critical operations, from permission management to fund
extraction, are ultimately controlled by a single private key,
despite superficial “decentralized” interfaces or multi-role
declarations. Three typical manifestations are:
• Centralized permission control. Roles such as admin,
liquidateAdmin (or manager, _super, etc.) are all initial-
ized to the deployer’s address, allowing unilateral mod-
ification of oracles, collateral ratios, fee structures, and
forced liquidations.

• Arbitrarily adjustable fee/tax. They impose exorbitant
buy/sell/withdrawal fees (often 10%–50%, up to 99%) via

9

Zhang Sheng, TAN KiaQuang, Shen Wang, Shengchen Duan, Kai Li, and Yue Duan

Figure 4: Time Series Analysis of transaction Volumes

an onlyOwner-protected function, with all collected fees
routed to one EOA.

• Lack of fund locking. “Staking” or “farm” contracts ad-
vertise emergency withdrawals or multi-layer strategies,
but there often exist functions (e.g., emergencyWithdraw(),
requestWithdraw(), or claimTokens()) that are only acces-
sible by the owner and can enable instant drainage.

Obfuscation strategies.We investigate the typical obfusca-
tion strategies adopted by these contracts and see that they
often use redundant functions, events, and misleading names
to obscure their true centralization. Here, we list a few very
representative ones. Please refer to Appendix A for a more
comprehensive breakdown.
• Role masquerading. They tend to create multiple roles that
point to the same address.
1 constructor () {

2 admin = msg.sender;

3 liquidateAdmin = msg.sender;

4 }

• Redundant permission checks. They introduce identical
checks repetitively to inflate code complexity without
adding any real safety.
1 require (msg.sender == admin);

2 require(msg.sender == liquidateAdmin);

• Dynamic fee adjustment: This function lets the owner uni-
laterally change both buy and sell tax rates at any time,
enabling arbitrary fee hikes that can extract maximum
revenue from users without prior notice.
1 function setTaxes(uint256 buyTax , uint256

sellTax) external onlyOwner {

2 taxForBuy = buyTax;

3 taxForSell = sellTax;

4 }

• Backdoored withdrawals. Although labeled as an emer-
gency rescue, this owner-only method allows immediate
token transfers from the contract to the owner’s EOA,
effectively serving as a hidden backdoor to drain all funds.

1 function emergencyWithdraw(uint256 amount)

external onlyOwner {

2 token.safeTransfer(msg.sender , amount);

3 }

• Redundant event and function: The contract may contain
hundreds of emit calls (e.g., FeeEvent, UserUnlocked) and
dozens of near-duplicate functions (e.g., _swapTokens, _ad-
dLiquidity, _withdrawFromBank, fulfillDeposited) inter-
leaved to generate noise for auditing.

Summary. Our study shows that it is prevalent for real-
world contracts to employ various obfuscation techniques to
hide their code logic, especially malicious behaviors such as
MEV, Ponzi, and fake decentralization, posing huge security
risks to end users.

6 FINANCIAL IMPACT ANALYSIS

After understanding the prevalence and real-world usages
of obfuscation techniques in smart contracts, we investigate
the financial impact of obfuscation, aiming to answer RQ3.
To do so, we collect a representative dataset of scam smart
contracts, use ObfProbe to detect the existence of obfusca-
tion, and qualitatively compare the financial impact between
obfuscated and non-obfuscated scam smart contracts using
several key metrics.

10

Understanding and Characterizing Obfuscated Funds Transfers in Ethereum Smart Contracts

6.1 Dataset

We leverage the dataset from a prior research, Li et al. [33],
which reports approximately 14K scam arbitrage bot con-
tracts. To collect the ground truth information on obfusca-
tion, we manually examine the dataset and label each con-
tract as obfuscated or non-obfuscated. Eventually, we gain
9,197 unique obfuscated contracts and 3,826 unique contracts
without obfuscation.

6.2 Comparison of Financial Loss

With the dataset, we conduct statistical analyses, visualize
the inbound ETH (fund inflows) of these contracts, and cal-
culate victim counts on the Ethereum mainnet to quantify
the impact. The results indicate that obfuscated contracts
exhibit a substantially more noticeable capacity for “money-
grabbing” regarding economic damage and have significantly
impacted users.
Comparison of Statistical Indicators. Table 6 summa-
rizes the mean and maximum inbound ETH for both no-
obfuscation and with-obfuscation groups.

Table 6: Mean and Maximum Inbound ETH

Contract Group Mean Inbound Maximum Inbound

No-Obfuscation 0.3403 ETH 83.62 ETH
With-Obfuscation 0.3454 ETH 201.74 ETH

As we can see, although the mean values are close (0.3403
ETH vs. 0.3454 ETH), the maximum inbound ETH for ob-
fuscated contracts (201.74 ETH) is nearly 2.4× higher than
that of non-obfuscated contracts (83.62 ETH). This indicates
that obfuscated scams can secure significantly larger inflows,
likely owing to their enhanced resistance to analysis and
detection.

6.3 Time Series Analysis

To better illustrate the impact, we conduct a time series
analysis on the victim counts and the aggregated inbound
funds that represent the financial loss caused by the scam
contracts, from 2018 to 2025, using a 15-day interval as the
time unit.
Inbound ETH. As illustrated in Figure 5, the blue line repre-
senting the inbound funds of no-obfuscation scams remains
near the zero axis throughout the period from 2018 to 2025,
with only occasional minor increases. In contrast, the orange
line, which represents obfuscation scams, displays multiple
significant peaks, particularly in 2019, 2020, 2022, and 2023.
These peaks highlight substantial financial losses for victims,
with losses exceeding 200 ETH during the 2022-2023 period.

Figure 5: Aggregated Inbound Ether Analysis

Figure 6: Temporal Analysis of Victim Counts

Victim Count. Figure 6 presents our temporal analysis of
victim counts. The orange line represents the total number
of victims affected by obfuscated scams, while the blue line
corresponds to those impacted by non-obfuscated scams.
It is evident that the number of victims from obfuscated
scams consistently exceeds that of non-obfuscated scams
throughout the period from 2022 to 2025. Notably, there are
sharp increases during specific intervals (e.g., from the latter
half of 2022 to 2023), with the total number of victims within
a single 15-day period reaching several hundred. In contrast,
victim counts for non-obfuscated scams remain exceptionally
low during the same periods, with no significant outbreaks
observed. These findings further highlight that obfuscated
scams result in significantly greater harm and affect a much
larger number of victims.
Summary. Our analysis reveals that obfuscated scam con-
tracts are more active than non-obfuscated ones and have
resulted in greater financial losses and a higher number of
victims. This finding aligns with our hypothesis: Obfuscation

11

Zhang Sheng, TAN KiaQuang, Shen Wang, Shengchen Duan, Kai Li, and Yue Duan

techniques enable scam contracts to operate more covertly dur-
ing their initial stages, allowing them to amass larger amounts
of funds and impact a greater number of victims.

7 IMPACT ON EXISTING TOOLS

Finally, we answer RQ4 by studying how obfuscation tech-
niques can affect the effectiveness of existing malware anal-
ysis tools. To conduct this study, we run SourceP [39], a
state-of-the-art tool for detecting Ponzi schemes in smart
contracts, on the same dataset described in Table 2. Then, we
calculate metrics, including accuracy, recall, and F1 Score, to
quantitatively compare its effectiveness in handling obfus-
cated and non-obfuscated samples.
Evaluation Results. Overall, its accuracy is 65.41% for all
453 samples. This contrasts with the higher precision re-
ported in the original paper, suggesting that in real-world
scenarios (especially for contracts with deeper obfuscation),
many false negatives and positives exist. A closer look at the
results, shown in Table 7, we can see that the effectiveness
difference between obfuscated and non-obfuscated samples
is very significant. SourceP achieves an F-1 score of 0.88 for
non-obfuscated samples, which roughly aligns with the de-
tection capability claimed in the original paper. However, for
obfuscated contracts, both accuracy and recall drop sharply,
with an F1 score of only around 0.21, indicating that obfusca-
tion techniques in real-world Ponzi samples can remarkably
affect the performance of state-of-the-art malware detection
tools.
Summary. Our study results demonstrate that obfuscation
has a significant detrimental impact on existing detection
tools (such as SourceP), causing a substantial drop in both
accuracy and recall. In particular, for Ponzi schemes with
obfuscation, the false negative rate can exceed 80%, rendering
state-of-the-art detection tools useless. At a practical level,
this observation underscores the importance of developing
practical obfuscation analysis techniques, which is essential
to mitigating the emerging security threats.

8 DISCUSSION

8.1 Challenges and Future Work

Obfuscation techniques in smart contracts present significant
challenges for auditing and regulatory practices, particularly
in scam contracts, MEV bots, and highly centralized systems.
These challenges include poor code readability, failure of
conventional static detection tools, and delays in regulatory
response. Several improvements are necessary to address
these issues.
Enhanced Detection Techniques. Static analysis tools
must be enhanced to track deeper control and data flows,
while de-obfuscation preprocessing can simplify bytecode

for more efficient audits. Dynamic analysis, such as runtime
tracing or fuzzing, can bypass superficial obfuscation and
validate fund flows during contract execution.
De-Obfuscation Strategies. Techniques from traditional
software security, such as CFG flattening reversal and se-
mantic normalization, can be adapted to EVM bytecode to
identify critical logic like transfers and permission checks
that obfuscation tries to hide.
Community-Driven Auditing. Establishing collaborative
platforms, such as a "contract blacklist" or "high-risk obfusca-
tion" repository, would allow researchers, auditors, and the
public to tag suspicious contracts, improving transparency
and enhancing collective oversight of the DeFi ecosystem.

8.2 Limitations

Ourwork has the following limitations. First, our findings are
based on the Ethereummainnet and do not cover other EVM-
compatible blockchains like BSC, Polygon, or Tron. Hence,
these blockchains may exhibit different obfuscation patterns.
Second, our study only considers contracts deployed between
2021 and 2024. Thus, new compiler features or obfuscation
techniques may emerge in future versions of Solidity or other
blockchain platforms. Third, not all obfuscation strategies
were covered. More advanced techniques, such as inline as-
sembly abuse or internal EVM feature manipulation, require
further investigation.

9 RELATEDWORK

Smart Contract Security Analysis. Some research em-
ploys static analysis to enhance smart contract security and
efficiency. USCHUNT [6] explores the balance between adapt-
ability and security in upgradeable contracts. Madmax [22]
targets vulnerabilities to prevent execution failures, while
Slither [60] and Smartcheck [66] automatically detect flaws
in Solidity contracts. Symbolic execution is also used to im-
prove security;Mythril [12] analyzes EVMbytecode, EthBMC [19]
combines symbolic execution with concrete validation, and
Reguard [38] and Manticore [45] identify reentrancy and
other bugs. Smartian [9] integrates fuzzingwith static and dy-
namic analysis, while Confuzzius [18] leverages data depen-
dency insights for fuzzing. CRYSOL [78] applies fuzzing to de-
tect cryptographic defects in contracts. ContractFuzzer [29]
and Sfuzz [44] apply fuzzing to uncover security issues.

Research highlights various formal verificationmethods to
enhance smart contract security. Sailfish [7] improves state
inconsistency detection, while VetSC.[17] extends DApp ver-
ification. Zeus[30] and Verx [47] focus on contract safety and
condition verification. Smartpulse [63] analyzes time-based
properties, Securify [67] identifies security breaches, and
Verismart [61] ensures contract safety.

12

Understanding and Characterizing Obfuscated Funds Transfers in Ethereum Smart Contracts

Table 7: Effectiveness of SourceP for Obfuscated and Non-Obfuscated Ponzi Samples.

Class Total TP FN Precision Recall F1

Non-obfuscated 361 287 74 0.79 0.79 0.88
Obfuscated 92 11 81 0.12 0.11 0.21

Excessive Owner Control. Centralization risk has been
emphasized by Lamby et al. (2023), who reported that central-
ized backdoors were responsible for $1.3 billion in DeFi losses
in 2021 [32]. Lin et al. (2023) further identified centralization
flaws, such as a single owner having the ability to modify
transfer fees or update proxy contracts arbitrarily [36]. Simi-
larly, Yu et al. (2025) highlighted hidden backdoors, including
arbitrary fund transfers [76]. Another form of centralization,
adjustable transaction fees, is frequently exploited by devel-
opers to impose excessive taxes on sales, as noted by Shiaeles
and Li (2024) [25]. Liquidity scams also leverage centraliza-
tion, with advanced schemes using disguised function names
or dynamic withdrawal logic to evade detection [27, 36].

Ponzi Schemes. Ponzi schemes on the blockchain gained
prominence with the advent of Ethereum, prompting sig-
nificant research into their detection. Galletta et al. (2024)
compiled thousands of Ponzi scheme contract samples and
developed classifiers to identify these schemes, focusing on
investment-dividend models where profits rely on funds
from later participants [20]. While detection methods for
traditional Ponzi schemes are well-established, research on
emerging DeFi variants remains limited. Earlier studies pri-
marily addressed simple fund-sharing contracts, but newer
schemes, such as Forsage, incorporate multi-level referral
reward systems and cyclic dependency token designs, which
have drawn legal scrutiny [69].

Advanced Anti-Auditing Techniques. Recent studies and
case analyses have revealed various deceptive tactics involv-
ing fake ownership renunciation. Normally, when develop-
ers invoke renounceOwnership(), the contract should no
longer have an administrator. However, malicious actors em-
ploy advanced techniques to retain control. Shiaeles and Li
(2024) documented a real-world token case where misleading
variable names were used within the contract. For example,
the public variables owner and getOwnerwere set to the zero
address, making ownership appear to have been renounced.
Yet, a hidden control variable, such as the seemingly harmless
isTokenReceiver, still stored the original developer’s ad-
dress [25]. As a result, although the contract appeared to have
relinquished ownership, a fixed backdoor tied to a designated
address remained. This type of fake renunciation is both
highly covert and technically complex. Beyond ownership
deception, many contracts use innocuous-sounding func-
tion names to disguise malicious logic. For instance, in the

aforementioned case, the function name isTokenReceiver
concealed administrative privileges. Similarly, other scam
contracts may include functions with names like failsafe()
or emergency(), which internally enable fund extraction or
permission restoration, accessible only to the developer.

MEV Bot Obfuscation Techniques. To protect MEV bots
from being front-run by generalized mimicking scripts in the
public mempool, practitioners and researchers have devel-
oped various obfuscation and privacy-preserving techniques.
The most common method is using private relays (e.g., Flash-
bots) to submit bundles directly to block builders, bypass-
ing the public mempool and preventing adversaries from
copying transactions [48, 75]. Intent-based protocols like
CoW Swap perform off-chain batch matching of user intents,
publishing only the final settlement on-chain to eliminate
front-running risks [77]. Gas camouflage techniques, such
as locking transactions to specific tx.gasprice values or
adding dummy computations, confuse adversarial repricing
strategies [75]. Multi-hop contract calls, often paired with
flash loans and non-standard swap paths, increase attackers’
simulation overhead [16, 77]. Bytecode-level obfuscations,
like inserting JUMPI pseudo-branches or splitting constants
via arithmetic, hinder static and dynamic analysis [77]. Re-
cent work has also explored threshold encryption, delayed
reveal schemes, and protocol-level MEV “tax” mechanisms
to internalize ordering profits [5, 16]. Despite these advance-
ments, systematic research on obfuscation techniques for
MEV bots at the smart contract level remains scarce.

10 CONCLUSION

In this paper, we systematically investigate obfuscation tech-
niques in Ethereum smart contract scams, providing com-
prehensive definitions, quantitative methods, and empirical
analysis. We introduce a novel approach based on the de-
tailed analysis of transfer instructions, identifying seven key
quantifiable obfuscation features. Using a robust Z-score
screening method, we analyze over 1.04 million Ethereum
contracts, isolating approximately 3,000 (top 0.3%) highly
suspicious contracts. Further quantitative financial impact
analysis shows a pronounced disparity between obfuscated
and non-obfuscated scam contracts: obfuscated contracts
show an extreme financial extraction capability. We also
demonstrate that obfuscation significantly undermines their
effectiveness. Overall, our findings underscore the severe
security risks posed by obfuscation and highlight the urgent

13

Zhang Sheng, TAN KiaQuang, Shen Wang, Shengchen Duan, Kai Li, and Yue Duan

need for advanced analytical and detection methodologies
to address these evolving threats, enhancing blockchain se-
curity and fostering transparency.

REFERENCES

[1] 2020. An analysis of crypto scams during the Covid-19 pandemic:
2020–2022. ResearchGate.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774 (2023).

[3] Rachit Agarwal, Tanmay Thapliyal, and Sandeep Kumar Shukla. 2022.
Vulnerability and transaction behavior based detection of malicious
smart contracts. In Cyberspace Safety and Security: 13th International
Symposium, CSS 2021, Virtual Event, November 9–11, 2021, Proceedings
13. Springer, 79–96.

[4] Jahangeer Ali and S Sofi. 2021. Ensuring security and transparency
in distributed communication in iot ecosystems using blockchain
technology: Protocols, applications and challenges. Int J Com Dig Sys
11, 1 (2021), 1–20.

[5] Mustafa Ibrahim Alnajjar, Mehmet Sabir Kiraz, Ali Al-Bayatti, and
Suleyman Kardas. 2024. Mitigating MEV attacks with a two-tiered ar-
chitecture utilizing verifiable decryption. EURASIP Journal on Wireless
Communications and Networking 2024, 1 (2024), 62.

[6] William E Bodell III, Sajad Meisami, and Yue Duan. 2023. Proxy
hunting: Understanding and characterizing proxy-based upgradeable
smart contracts in blockchains. In 32nd USENIX Security Symposium
(USENIX Security 23). 1829–1846.

[7] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher
Kruegel, and Giovanni Vigna. 2022. Sailfish: Vetting smart contract
state-inconsistency bugs in seconds. In 2022 IEEE Symposium on Secu-
rity and Privacy (SP). IEEE, 161–178.

[8] Burgerswap. 2025. Burgerswap. https://burgerswap.org/trade/swap/.
[9] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce,

and Sang Kil Cha. 2021. SMARTIAN: Enhancing smart contract fuzzing
with static and dynamic data-flow analyses. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 227–239.

[10] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A
taxonomy of obfuscating transformations.

[11] Compound. 2025. Compound.Finance. https://compound.finance/.
[12] ConsenSys. 2022. Mythril: security analysis tool for EVM bytecode.

https://github.com/ConsenSys/mythril/.
[13] Denis Cousineau and Sylvain Chartier. 2010. Outliers detection and

treatment: a review. International journal of psychological research 3, 1
(2010), 58–67.

[14] Crytic. 2025. Rattle: EVM Binary Static Analysis. https://github.com/
crytic/rattle. Accessed: April 15, 2025.

[15] Alexander E Curtis, Tanya A Smith, Bulat A Ziganshin, and John A
Elefteriades. 2016. The mystery of the Z-score. Aorta 4, 04 (2016),
124–130.

[16] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao,
Iddo Bentov, Lorenz Breidenbach, and Ari Juels. 2019. Flash boys 2.0:
Frontrunning, transaction reordering, and consensus instability in
decentralized exchanges. arXiv preprint arXiv:1904.05234 (2019).

[17] Yue Duan, Xin Zhao, Yu Pan, Shucheng Li, Minghao Li, Fengyuan Xu,
and Mu Zhang. 2022. Towards Automated Safety Vetting of Smart
Contracts in Decentralized Applications.. In Proceedings of the 29nd
ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM.

[18] Christof Ferreira Torres, Antonio Ken Iannillo, and Arthur Gervais.
2021. CONFUZZIUS: A Data Dependency-Aware Hybrid Fuzzer for
Smart Contracts. In European Symposium on Security and Privacy,
Vienna 7-11 September 2021.

[19] Joel Frank, Cornelius Aschermann, and ThorstenHolz. 2020. ETHBMC:
A Bounded Model Checker for Smart Contracts. In 29th USENIX Secu-
rity Symposium (USENIX Security 20). 2757–2774.

[20] L Galletta and F Pinelli. 2024. Explainable ponzi schemes detection
on ethereum. In Proceedings of the 39th ACM/SIGAPP Symposium on
Applied Computing. 1014–1023.

[21] Sangita F Gazi. 2024. In Code We Trust: Blockchain’s Decentralization
Paradox. VAND. J. ENT. & TECH. L 27, 1 (2024), 59.

[22] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. 2018. Madmax: Surviving out-of-gas
conditions in ethereum smart contracts. Proceedings of the ACM on
Programming Languages 2, OOPSLA (2018), 1–27.

[23] Rajesh Gupta, Mohil Maheshkumar Patel, Arpit Shukla, and Sudeep
Tanwar. 2022. Deep learning-based malicious smart contract detection
scheme for internet of things environment. Computers & Electrical
Engineering 97 (2022), 107583.

[24] Y Gupta, J Kumar, and A Reifers. 2022. Identifying security risks in
NFT platforms. arXiv preprint arXiv:2204.01487 (2022).

[25] O J Hall, S Shiaeles, and F Li. 2024. A Study of Ethereum’s Transition
from Proof-of-Work to Proof-of-Stake in Preventing Smart Contracts
Criminal Activities. Network 4, 1 (2024), 33–47.

[26] Daojing He, Rui Wu, Xinji Li, Sammy Chan, and Mohsen Guizani.
2023. Detection of vulnerabilities of blockchain smart contracts. IEEE
Internet of Things Journal 10, 14 (2023), 12178–12185.

[27] P D Huynh, S H Dau, N Huppert, et al. 2024. Serial Scammers and
Attack of the Clones: How Scammers Coordinate Multiple Rug Pulls
on Decentralized Exchanges. arXiv preprint arXiv:2412.10993 (2024).

[28] Nikolay Ivanov, Chenning Li, Qiben Yan, Zhiyuan Sun, Zhichao Cao,
and Xiapu Luo. 2023. Security threat mitigation for smart contracts:
A comprehensive survey. Comput. Surveys 55, 14s (2023), 1–37.

[29] Bo Jiang, Ye Liu, andWing Kwong Chan. 2018. Contractfuzzer: Fuzzing
smart contracts for vulnerability detection. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 259–269.

[30] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018.
Zeus: analyzing safety of smart contracts.. In Ndss. 1–12.

[31] K Senthamarai Kannan, K Manoj, and S Arumugam. 2015. Labeling
methods for identifying outliers. International Journal of Statistics and
Systems 10, 2 (2015), 231–238.

[32] M Lamby, V Zieglmeier, and C Ziegler. 2023. Trusting a Smart Contract
Means Trusting Its Owners: Understanding Centralization Risk. In
2023 5th Conference on Blockchain Research & Applications for Innova-
tive Networks and Services (BRAINS). IEEE, 1–4.

[33] K. Li, S. Guan, and D. Lee. 2023. Towards Understanding and Charac-
terizing the Arbitrage Bot Scam In the Wild. Proceedings of the ACM
on Measurement and Analysis of Computing Systems 7, 3 (2023), 1–29.
https://doi.org/10.1145/3626783

[34] Shijia Li, Chunfu Jia, Pengda Qiu, Qiyuan Chen, Jiang Ming, and
Debin Gao. 2022. Chosen-instruction attack against commercial code
virtualization obfuscators. In In Proceedings of the 29th Network and
Distributed System Security Symposium.

[35] R Liang, J Chen, K He, et al. 2024. Ponziguard: Detecting ponzi schemes
on ethereum with contract runtime behavior graph (CRBG). In ICSE
’24. 1–12.

[36] Z Lin, J Chen, J Wu, et al. 2024. Definition and Detection of Central-
ization Defects in Smart Contracts. arXiv preprint arXiv:2411.10169
(2024).

14

https://burgerswap.org/trade/swap/
https://compound.finance/
https://github.com/ConsenSys/mythril/
https://github.com/crytic/rattle
https://github.com/crytic/rattle
https://doi.org/10.1145/3626783

Understanding and Characterizing Obfuscated Funds Transfers in Ethereum Smart Contracts

[37] R. Little and D. Xu. 2023. Inspecting Compiler Optimizations on Mixed
Boolean Arithmetic Obfuscation. In Proceedings of the Network and
Distributed System Security Symposium (NDSS).

[38] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill
Roscoe. 2018. Reguard: finding reentrancy bugs in smart contracts. In
2018 IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion). IEEE, 65–68.

[39] P Lu, L Cai, and K Yin. 2024. SourceP: Detecting ponzi schemes on
ethereum with source code. In ICASSP ’24. 4465–4469.

[40] Wei Ma, Chenguang Zhu, Ye Liu, Xiaofei Xie, and Yi Li. 2023. A
comprehensive study of governance issues in decentralized finance
applications. ACM Transactions on Software Engineering and Method-
ology (2023).

[41] ANGEL JAVIER BLASCO MAINAR, JOSÉ MARÍA DE LA CRUZ, and
SÁNCHEZ Y ALBERTO MORENO BRASERO. [n. d.]. MAXIMAL
EXTRACTABLE VALUE (MEV). ([n. d.]).

[42] Bruno Mazorra, Michael Reynolds, and Vanesa Daza. 2022. Price of
mev: towards a game theoretical approach to mev. In Proceedings of
the 2022 ACM CCS Workshop on Decentralized Finance and Security.
15–22.

[43] Alexandre Mota, Fei Yang, and Cristiano Teixeira. 2023. Formally
Verifying a Real World Smart Contract. arXiv preprint arXiv:2307.02325
(2023).

[44] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh.
2020. sfuzz: An efficient adaptive fuzzer for solidity smart contracts. In
Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. 778–788.

[45] Trail of Bits. 2024. Manticore: symbolic execution tool for smart
contract. https://github.com/trailofbits/manticore/.

[46] Yu Pan, Zhichao Xu, Levi Taiji Li, Yunhe Yang, and Mu Zhang. 2023.
Automated generation of security-centric descriptions for smart con-
tract bytecode. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis. 1244–1256.

[47] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Cohen, and Martin Vechev. 2020. Verx: Safety verification of smart
contracts. In 2020 IEEE symposium on security and privacy (SP). IEEE,
1661–1677.

[48] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying
blockchain extractable value: How dark is the forest?. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 198–214.

[49] Erwin Quiring, Alwin Maier, and Konrad Rieck. 2019. Misleading
authorship attribution of source code using adversarial learning. In
28th USENIX Security Symposium (USENIX Security 19). 479–496.

[50] Azam Rashid and Muhammad Jawaid Siddique. 2019. Smart contracts
integration between blockchain and Internet of Things: Opportunities
and challenges. In 2019 2nd International Conference on Advancements
in Computational Sciences (ICACS). IEEE, 1–9.

[51] X Ruan. 2022. Exploring Vulnerabilities and Anomalies in NFT Market-
places. Ph. D. Dissertation. University of Guelph.

[52] SM Nazmuz Sakib. 2024. Blockchain technology for smart contracts:
enhancing trust, transparency, and efficiency in supply chain man-
agement. In Achieving Secure and Transparent Supply Chains With
Blockchain Technology. IGI Global Scientific Publishing, 246–266.

[53] MSVPJ Sathvik and Hirak Mazumdar. 2024. Detection of malicious
smart contracts by fine-tuning GPT-3. Security and Privacy 7, 6 (2024),
e430.

[54] Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. 2020. Smart
contract: Attacks and protections. Ieee Access 8 (2020), 24416–24427.

[55] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van
Den Berg, Ivan Titov, and Max Welling. 2018. Modeling relational
data with graph convolutional networks. In The semantic web: 15th
international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7,

2018, proceedings 15. Springer, 593–607.
[56] Moritz Schloegel, Tim Blazytko, Moritz Contag, Cornelius Ascher-

mann, Julius Basler, Thorsten Holz, and Ali Abbasi. 2022. Loki: Hard-
ening code obfuscation against automated attacks. In 31st USENIX
Security Symposium (USENIX Security 22). 3055–3073.

[57] C. Sendner, H. Chen, H. Fereidooni, et al. 2023. Smarter Contracts: De-
tecting Vulnerabilities in Smart Contracts with Deep Transfer Learn-
ing. InNDSS. https://www.ndss-symposium.org/wp-content/uploads/
2023/02/ndss2023_s263_paper.pdf

[58] Harshit Shah, Dhruvil Shah, Nilesh Kumar Jadav, Rajesh Gupta, Sudeep
Tanwar, Osama Alfarraj, Amr Tolba, Maria Simona Raboaca, and
Verdes Marina. 2023. Deep learning-based malicious smart contract
and intrusion detection system for IoT environment. Mathematics 11,
2 (2023), 418.

[59] Sakshi Sharma and Natasha Dutta. 2018. Development of New Smart
City Applications using Blockchain Technology and Cybersecurity
Utilisation. Development 7, 11 (2018).

[60] Slither. 2024. Slither, the Solidity source analyzer. https://github.com/
crytic/slither/.

[61] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh.
2020. VeriSmart: A highly precise safety verifier for Ethereum smart
contracts. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
1678–1694.

[62] Solidity. 2025. Common Patterns. https://docs.soliditylang.org/en/v0.
8.30/common-patterns.html/.

[63] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and
Isil Dillig. 2021. SmartPulse: automated checking of temporal prop-
erties in smart contracts. In 2021 IEEE Symposium on Security and
Privacy (SP). IEEE, 555–571.

[64] Wesley Joon-Wie Tann, Xing Jie Han, Sourav Sen Gupta, and Yew-
Soon Ong. 2018. Towards safer smart contracts: A sequence learning
approach to detecting security threats. arXiv preprint arXiv:1811.06632
(2018).

[65] Usman Tariq, Atef Ibrahim, Tariq Ahmad, Yassine Bouteraa, and
Ahmed Elmogy. 2019. Blockchain in internet-of-things: a necessity
framework for security, reliability, transparency, immutability and
liability. IET Communications 13, 19 (2019), 3187–3192.

[66] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil
Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. 2018.
Smartcheck: Static analysis of ethereum smart contracts. In Proceed-
ings of the 1st International Workshop on Emerging Trends in Software
Engineering for Blockchain. 9–16.

[67] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Buenzli, and Martin Vechev. 2018. Securify: Practical security
analysis of smart contracts. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 67–82.

[68] Uniswap. 2025. Uniswap Protocol. https://uniswap.org/.
[69] U.S. Department of Justice. [n. d.]. U.S. DOJ charges four Russian

nationals for role in DeFi Ponzi Scheme Forsage. https://www.trmlabs.
com/resources/blog/law-enforcement-spotlight-forsage. TRM Blog,
2023, August 14.

[70] F Victor. 2022. Uncovering fraudulent activities in ethereum-based
cryptoassets with distributed ledger analytics. Ph. D. Dissertation. Tech-
nische Universität Berlin, Berlin. 2023.

[71] Steven Walfish. 2006. A review of statistical outlier methods. Pharma-
ceutical technology 30, 11 (2006), 82.

[72] W. Wang, P. Zhang, R. Ji, W. Huang, and Z. Meng. 2024. JANUS:
A Difference-Oriented Analyzer For Financial Centralization Risks.
arXiv preprint arXiv:2412.03938 (2024). https://arxiv.org/abs/2412.
03938

[73] J Wu, D Lin, Q Fu, et al. 2023. Toward understanding asset flows in
crypto money laundering through the lenses of Ethereum heists. IEEE

15

https://github.com/trailofbits/manticore/
https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_s263_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_s263_paper.pdf
https://github.com/crytic/slither/
https://github.com/crytic/slither/
https://docs.soliditylang.org/en/v0.8.30/common-patterns.html/
https://docs.soliditylang.org/en/v0.8.30/common-patterns.html/
https://uniswap.org/
https://www.trmlabs.com/resources/blog/law-enforcement-spotlight-forsage
https://www.trmlabs.com/resources/blog/law-enforcement-spotlight-forsage
https://arxiv.org/abs/2412.03938
https://arxiv.org/abs/2412.03938

Zhang Sheng, TAN KiaQuang, Shen Wang, Shengchen Duan, Kai Li, and Yue Duan

Transactions on Information Forensics and Security 19 (2023), 1994–
2009.

[74] S. Xia, S. Shao, T. Yu, and L. Song. 2025. SymGPT: Auditing Smart
Contracts via Combining Symbolic Execution with Large Language
Models. arXiv preprint arXiv:2502.07644 (2025). https://arxiv.org/abs/
2502.07644

[75] Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng
Zhu. 2024. SoK: MEV Countermeasures. In Proceedings of theWorkshop
on Decentralized Finance and Security. 21–30.

[76] K W Yu and B M Lee. 2025. Detecting Rug-Pull: Analyzing Smart
Contract Backdoor Codes in Ethereum. Applied Sciences 15, 1 (2025),
450.

[77] Deniz Yüksel. [n. d.]. A Retrospective Analysis of Public and Private
Order Flow on the Ethereum Blockchain. ([n. d.]).

[78] Jiashuo Zhang, Yiming Shen, Jiachi Chen, Jianzhong Su, Yanlin Wang,
Ting Chen, Jianbo Gao, and Zhong Chen. 2024. Demystifying and
Detecting Cryptographic Defects in Ethereum Smart Contracts. In
IEEE/ACM International Conference on Software Engineering.

[79] Z. Zhang, Z. Lin, M. Morales, and X. Zhang. 2023. Your exploit is
mine: Instantly synthesizing counterattack smart contract. In USENIX
Security. https://www.usenix.org/conference/usenixsecurity23/
presentation/zhang-zhuo-exploit

[80] L. Zhou, L. Wang, and K. Qin. 2024. DeFiAligner: Leveraging Sym-
bolic Analysis and LLMs for Inconsistency Detection in DeFi. In AFT
2024. https://drops.dagstuhl.de/opus/volltexte/2024/19803/pdf/LIPIcs-
AFT-2024-7.pdf

[81] L. Zhou, X. Xiong, and J. Ernstberger. 2023. SoK: Decentralized Finance
(DeFi) Attacks. IEEE Symposium on Security and Privacy (2023). https:
//arxiv.org/pdf/2208.13035.pdf

A EXTREMELY CENTRALIZED

CONTRACTS

A.1 Centralized Permission Control

(1) Overall Scam Logic Overview

Such contracts often appear under the guise of "lending
protocols", "collateral management", "liquidity safeguarding",
etc., mimicking the interfaces and function names of well-
known protocols like Compound or Uniswap. However, in
reality, they are entirely controlled by a few roles—such
as admin and liquidateAdmin (and sometimes more, e.g.,
manager or _super)—that manage all key operations.

• Highly Centralized Permissions: The deployer
(Owner) assignsmultiple administrative roles to them-
selves in the constructor, enabling them to modify
the oracle, collateral ratios, fee structures, or even
forcefully liquidate user assets at any time.

• Pseudo-"Decentralization": Although the contract
outwardly featuresmultiple roles and safeguardmech-
anisms, the actual execution authority remains con-
centrated in a single private key address, leaving
users unable to prevent backdoor operations by the
owner.

In practice, these "highly centralized" contracts typically
use lengthy, repetitive code and a plethora of events (emit)

to create complexity, making it difficult for external auditors
to immediately discern their true nature.

(2) Analysis of Code-Level Obfuscation Techniques

Below, we analyze a real-world case of a contract named
AegisComptroller.sol (a pseudonym) to illustrate how
such contracts conceal their centralized permission design
through role masquerading, numerous redundant functions,
and excessive event logging.

• Role Masquerading: Multiple Names, Layered

Functions, but Controlled by the Same Address

Dual Roles with the Same Private Key:

1 constructor () public {

2 admin = msg.sender;

3 liquidateAdmin = msg.sender;

4 }

In the constructor, both admin and liquidateAdmin
are set to the same address, creating an illusion of
multiple roles while, in fact, the same entity controls
everything.

• Redundant Permission Checks: The contract re-
peatedly uses REQUIRE(msg.sender == admin, ...)
and REQUIRE(msg.sender == liquidateAdmin, ...) in
various locations. Since these checks are essentially
equivalent, they further complicate code readability
and give the false impression of a robust permission
system.

• Numerous "Administrative" Functions and Spu-

rious Security Checks:

– Seemingly Compliant Configuration Func-

tions:

1 function _setPriceOracle(PriceOracle

,

2 _newOracle)

3 public returns (uint) {

4 REQUIRE(msg.sender == admin ,

5 "SET_PRICE_ORACLE_OWNER_CHECK");

6 oracle = _newOracle;

7 ...

8 }

9 function _setCollateralFactor(

10 AToken_aToken ,

11 uint _newCollateralFactorMantissa)

12 external returns (uint) {

13 REQUIRE(msg.sender == admin ,

14 "SET_COLLATERAL

15 _FACTOR_OWNER_CHECK");

16 ...

17 }

These functions are named very similarly to
those in Compound (e.g., "set price oracle" or
"set collateral factor"), but they only REQUIRE

16

https://arxiv.org/abs/2502.07644
https://arxiv.org/abs/2502.07644
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhuo-exploit
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhuo-exploit
https://drops.dagstuhl.de/opus/volltexte/2024/19803/pdf/LIPIcs-AFT-2024-7.pdf
https://drops.dagstuhl.de/opus/volltexte/2024/19803/pdf/LIPIcs-AFT-2024-7.pdf
https://arxiv.org/pdf/2208.13035.pdf
https://arxiv.org/pdf/2208.13035.pdf

Understanding and Characterizing Obfuscated Funds Transfers in Ethereum Smart Contracts

an admin call and do not incorporate any mul-
tisignature or time delay mechanisms.

– Redundant Role Assignments:

For example, functions such as _setMintGuardian-
Paused(), _setBorrowGuardianPaused(), and _set-
PauseGuardian() ostensibly providemultiple safe-
guard roles; however, a single admin instruction
can control all permissions.

• Direct Backdoor Functions: autoLiquidity / au-

toClearance

– Automated Liquidation Interface:

1 function autoLiquidity(

2 address _account ,

3 uint _liquidityAmount ,

4 uint _liquidateIncome)

5 public returns (uint) {

6 REQUIRE(msg.sender == liquidateAdmin

,

7 "SET_PRICE_ORACLE_OWNER_CHECK");

8 ...

9 // Actually calls

10 // autoLiquidityInternal (...)

11 }

With only the liquidateAdmin (still the deployer’s
private key), the contract can forcibly seize the
collateral of any _account.

– Internal Forced Transfers:

1 asset.ownerTransferToken(_owner ,

2 _account , vars.aTokenBalance);

3 asset.ownerCompensation(_owner ,

4 _account , vars.aTokenBorrow);

These functions effectively transfer the user’s
aToken or lending assets to _owner (i.e., the ad-
ministrator).

• Redundant Functions and Events Obscuring the

True Process:

– Redundant Functions: Functions such as _set-
MintGuardianPaused(),_setBorrow-GuardianPau-
sed(), _setTransferPaused(), autoLiquidityInter-
nal(), an-d autoClearanceInternal() have nearly
identical internal logic but are implemented in
several different versions.

– Event Redundancy:

1 event AutoLiquidity(address _account

,

2 uint _actualAmount);

3 event AutoClearance(address _account

,

4 uint _liquidateAmount ,

5 uint _actualAmount);

6 event NewPriceOracle(

7 PriceOracle _oldPriceOracle ,

8 PriceOracle _newPriceOracle);

The contract defines more than a dozen events,
covering actions from market entry and exit to
liquidation and oracle switching. The flood of
logs during execution makes it difficult for audi-
tors to quickly pinpoint the key backdoor trans-
fers.

• "Guardian" Also Controlled by the Same Admin:

1 function _setPauseGuardian(

2 address _newPauseGuardian

3)

4 public returns (uint) {

5 REQUIRE(msg.sender == admin ,

6 "change not authorized");

7 pauseGuardian = _newPauseGuardian;

8 ...

9 }

Although this function appears to assign the pause-
Guardian for emergency shutdown of lending/mint-
ing, it can still be modified or invoked at any time
by the admin (i.e., the same private key), lacking any
checks or balances.

(3) Core Features Identifiable from a Bytecode/Tool

Perspective

• Numerous SLOAD/EQ Operations Targeting the

Same Owner Storage Slot: When decompiled or
analyzed using SSA, tools will observe that the con-
tract repeatedly reads from the same storage slot
(e.g., for admin or liquidateAdmin) and compares it
with msg.sender, at a frequency far exceeding that
of typical contracts.

• Backdoor FunctionsDependent onExternal Calls:

CALL instructions such as ownerTransferToken(...)
and ownerCompensation(...) may appear in multiple
locations and are controlled by a single address, indi-
cating that the fund flow ultimately converges to the
same external address.

• High Function Redundancy and Excessive emit
Usage: Analysis of the control flow graph (CFG) or
branch structure reveals multiple function blocks
with extremely high similarity, and multiple emit
events appear before and after the Transfer. This
results in an unusually high proportion of redundant
instructions.

In summary, contracts employing "highly centralized per-
mission control" create audit noise through techniques such
as role name masquerading, dispersed configuration func-
tions, and excessive event logging. Yet, all critical operations
remain controlled by a single address, clearly posing a Rug
Pull risk.

17

Zhang Sheng, TAN KiaQuang, Shen Wang, Shengchen Duan, Kai Li, and Yue Duan

A.2 Unreasonable and Arbitrarily

Adjustable High Fee / Tax Contracts

(1) Overall Scam Logic Overview

Such contracts typically adopt a "token issuance + Auto-
mated Market Maker (AMM)" model. They claim to offer var-
ious functions such as liquidity management, charity funds,
and marketing pools, but their true purpose is to harvest ordi-
nary users by imposing exorbitant and arbitrarily adjustable
"fees" or "taxes." Their main characteristics include:

• Exorbitant Fee Rates: The fee rates for buying, sell-
ing, or withdrawing can often range from 10% to 50%,
and may even be instantly adjusted up to 99%, far
exceeding normal transaction fees.

• Multiple Nominal Tax Categories: Contracts of-
ten declare several tax types (e.g., "Marketing Tax",
"Liquidity Tax", "Development Tax"), yet the funds ul-
timately flow to a single EOA (the project’s address).

• Arbitrarily Adjustable: Through functions like set-
Taxes() or similar, the contract administrator (Owner)
can increase the fee rate from as low as 3% to as high
as 99% at any time, without requiring any voting,
multisignature, or delay. Consequently, users may
unexpectedly face exorbitant fees, and a substantial
amount of funds flows directly into the project’s wal-
let.

• Redundant Event Obfuscation: A large number
of events (e.g., FeeEvent, logTax, or other unrelated
logs) are inserted before and after critical transfers
or transactions, masquerading as "transparent oper-
ations." In reality, these merely serve to conceal the
true harvesting logic, making it difficult for auditors
or users to quickly discern the actual fund flow.

In summary, such contracts leverage a "high liquidity +
high tax" structure to attract initial funds, and once the token
gains popularity, they can instantly raise the fee rate or even
lock transactions, resulting in heavy losses for users while
the project continuously profits.

(2) Code-levelObfuscation/BackdoorTechniqueAnal-

ysis

Below, we use the "GATSOKU" contract as an example to
illustrate the typical implementations in this type of scam
contract with respect to high fee rates, on-demand adjusta-
bility, and multiple event obfuscations.

• Exaggerated Tax Rate Settings and On-Demand

Adjustments:

– Initial High Tax:

1 uint256 public taxForLiquidity = 47;

2 uint256 public

3 taxForMarketingHostingDevelopment

4 = 47;

At deployment, the contract sets a transaction
tax rate of 47% + 47% = 94%, which can easily be
raised to 99%.

– Temporary Adjustments:

1 function postLaunch ()

2 external onlyOwner {

3 taxForLiquidity = 0;

4 taxForMarketingHostingDevelopment

5 = 3;

6 ...

7 }

With the onlyOwner modifier, the administrator
can instantly adjust the tax rates without any
multisignature or delay.

• All Taxes Consolidated to a Single Address, with

No Lockup or Custody:

1 address public marketingWallet

2 = 0x02796bAeb663;

3 bool sent =

4 payable(marketingWallet).send(

5 address(this).balance

6);

7 REQUIRE(sent , "Failed to send ETH");

After taxation, all funds are transferred to marketing-
Wallet, which the administrator can change at any
time. There is no external custody or lockup, nor any
community oversight mechanism.

• Complex Fee Calculations and Numerous Aux-

iliary Functions During Transactions:

– Core _transfer() Function:

1 function _transfer(address from ,

2 address to,

3 uint256 amount)

4 internal override

5 {

6 ...

7 if ((from == uniswapV2Pair

8 || to == uniswapV2Pair)

9 &&

10 !inSwapAndLiquify) {

11 if (! _isExcludedFromFee[from]

12 && !_isExcludedFromFee[to]) {

13 uint256 marketingShare =

14 (amount *

taxForMarketingHosting

15 Development)

16 / 100;

17 uint256 liquidityShare =

18 (amount * taxForLiquidity) /

100;

19 // Transfer the tax portion to

20 //this contract ,

18

Understanding and Characterizing Obfuscated Funds Transfers in Ethereum Smart Contracts

21 //then later to marketingWallet

22 super._transfer(from , address(

this),

23 (marketingShare +

liquidityShare));

24 _marketingReserves +=

marketingShare;

25 }

26 }

27 super._transfer(from , to,

28 transferAmount);

29 }

The tax portion is continuously retained within
the contract and eventually transferred to mar-
ketingWallet.

– Complex Swap/Liquify Functions:

1 function _swapTokensForEth(

2 uint256 tokenAmount

3)

4 private lockTheSwap

5 {

6 ...

7 uniswapV2Router.

8 swapExactTokensForETHSupporting

9 FeeOnTransferTokens(

10 tokenAmount ,

11 0,

12 path ,

13 address(this),

14 block.timestamp

15);

16 }

17 function _addLiquidity(

18 uint256 tokenAmount ,

19 uint256 ethAmount)

20 private lockTheSwap {

21 uniswapV2Router.addLiquidityETH{

22 value: ethAmount

23 }(

24 address(this),

25 tokenAmount ,

26 0,

27 0,

28 marketingWallet ,

29 block.timestamp

30);

31 }

These functions increase the complexity of the
audit, giving the impression of professional auto-
mated market-making logic, though ultimately
a large amount of funds still flows to a single
address.

• Redundant Event Insertion and "Unlock Func-

tion" Disguising: The code also defines events and

structures that are completely unrelated to taxation,
such as UserUnlocked and ChannelUnlocked:
1 struct userUnlock {

2 string tgUserName;

3 bool unlocked;

4 ... }

5 event UserUnlocked(

6 string tg_username ,

7 uint256 unlockTime

8);

Such unrelated logic is dispersed throughout the
code, increasing the difficulty of reading and audit-
ing, and thereby obscuring the core tax-harvesting
operations.

(3) Core Features Extractable from Bytecode/Tool

Detection

• High Complexity in Transfer Logic:Within the
_transfer() function, the frequent insertion of string
operations and branch conditions results in elevated
values for the features "branch tree depth of address
generation" and "emit log density."

• External CALL Tracing: After taxation, external
contracts (e.g., uniswapV2Router) are often called to
perform token swaps, and the resulting ETH is sent to
the project’s address. Tools can detect this via back-
ward slicing—when the owner arbitrarily changes
variables, the tax rate takes effect immediately, mark-
ing it as a high-risk feature.

• Abundant Irrelevant Events or States: Irrelevant
events (such as UserUnlocked or CostUpdated) fre-
quently occur before and after the Transfer, which
tools can flag as "log noise" or "potential obfuscation
techniques."

Overall, while these contracts superficially implement "au-
tomated liquidity management" and insert functions and
events unrelated to taxation, their core logic remains that
the administrator can instantaneously raise the fee rate and
harvest funds from retail investors. Once the tax rate in-
creases to 90%–99%, ordinary users can hardly liquidate their
assets, and their funds are continuously funneled into the
project’s private pocket.

A.3 Contracts Without Genuine Fund

Locking

(1) Overall Scam Logic Overview

Contracts of this type typically attract users by advertising
themselves as “DeFi Farms / Staking / NFT Pools / Lending”
platforms, promising high yields or robust security measures.
However, their fundamental characteristics are as follows:

• The contract does not actually lock user funds in a
decentralized manner.

19

Zhang Sheng, TAN KiaQuang, Shen Wang, Shengchen Duan, Kai Li, and Yue Duan

• The Owner possesses a backdoor that allows funds
to be transferred or drained at any time.

• Functions such as emergencyWithdraw(), emergen-
cyEnd(), or emergencyRescue() are exclusively avail-
able to the project team, leaving ordinary users de-
fenseless.

Once users deposit funds into the contract, their money
appears to be “staked” or “custodied” in a “Bank” or “Strat-
egy.” In reality, a single Owner key is sufficient to withdraw
the funds instantly. The long functions and complex data
structures (e.g., multiple layers of strategy, Bank, Deposit)
significantly increase the difficulty of auditing, thereby con-
cealing the true centralized backdoor logic.

(2) Code-levelObfuscation/BackdoorTechniques and

Examples

Taking Staking.sol as an example, we illustrate how
these contracts mislead outsiders with complex “strategy
management,” “emergency withdrawals,” and “cross-contract
calls,” while in reality allowing the Owner to control all
assets.
Lack of Genuine "Locking" of Liquidity and Strate-

gies:

Bank & Strategy: The contract defines data structures
such as Bank, StrategyParameters, and Deposit to record
strategy names, staked amounts, safety flags, etc. At first
glance, user funds appear to be systematically custodied and
yield calculated:

1 struct StrategyParameters {

2 string name;

3 bool isSafe;

4 uint256 rateX1000;

5 bool isPaused;

6 uint256 withdrawId;

7 }

8 function purchaseStableTokens(

9 string memory strategyName ,

10 uint256 amount)

11 external

12 onlyOwner

13 {

14 REQUIRE(amount > 0, 'amount = 0');

15 REQUIRE(strategiesParameters[strategyName]

16 .rateX1000 != 0,

17 'Strategy is not exist');

18 _stableToken.safeTransferFrom(

19 msg.sender ,

20 address(this), amount);

21 stableTokenBank[strategyName]

22 += amount;

23 ...

24 emit AddBank(

25 block.timestamp ,

26 strategyName ,

27 amount);

28 }

However, the funds ultimately remain under the contract’s
control, and are freely managed by functions guarded by
onlyOwner, without any multisignature or time delay.

Fake Process: Some functions (e.g., requestWithdraw(...)
and others) appear to REQUIRE user initiation, but the key
steps or conditions can be forcefully modified by the Owner.
For example:
1 function requestWithdraw(

2 uint256 depositId)

3 external

4 ...

5 {

6 ...

7 if (_withdrawFromBank(depositId)) {

8 return;

9 }

10 ...

11 }

If the project inserts additional conditions or backdoor calls
in _withdrawFromBank(...) then any “locking” restrictions
can be bypassed.

"Emergency/Backend" Functions forOn-DemandWith-

drawals:

Claiming to "Protect Users": Contracts often claim in
their documentation that in the event of a security inci-
dent, functions such as emergencyWithdraw() or fulfillDe-
posited(...) can be activated to protect users. In the code,
however, these functions are mostly restricted to onlyOwner,
with no multisignature or community approval:
1 function claimTokens(

2 uint256 maxStableAmount

3)

4 external onlyOwner

5 {

6 // Convert user deposits to

7 // stableToken and then transfer

8 //to msg.sender (Owner)

9 _stableToken.safeTransfer(

10 msg.sender , stableAmount);

11 ...

12 }

Although users might still see “balance = 100” in the internal
ledger, the actual funds have long been withdrawn.

Multiple Fulfill Interfaces:

1 function fulfillDeposited(

2 string memory strategyName ,

3 uint256 amountMaxInStable

4)

5 external onlyOwner {

6 ...

20

Understanding and Characterizing Obfuscated Funds Transfers in Ethereum Smart Contracts

7 }

8 function fulfillRewards(

9 string memory strategyName ,

10 uint256 amountMaxInStable

11)

12 external onlyOwner

13 {

14 ...

15 }

Under the guise of “liquidation” or “reward,” these func-
tions actually serve as backdoor withdrawal mechanisms.
When combined with delegatecall to an external contract
(e.g., StakingShadow), the obfuscation is further deepened.

Redundant/Highly Similar Functions:

Multiple withdrawal/transfer functions such as _with-
drawFromBank(...), withdraw(...), fulfillDeposited(...), and
claimTokens(...)—despite having different names, share simi-
lar logic and can all be used to extract or transfer assets.

1 function _withdrawFromBank(

2 uint256 depositId

3)

4 internal ...

5 {

6 ...

7 _claim(depositId);

8 ...

9 emit Withdrawed(

10 block.timestamp ,

11 depositId);

12 }

Splitting into External Contracts: Subcontracts like Stak-
ingShadow are employed to offload part of the logic via
delegatecall. Although they appear to separate some func-
tionality from the main contract, they ultimately merge at
runtime to form a unified permission chain.
(3) Core Features Extractable from Bytecode/Tool

Detection

• Function Similarity Analysis: Automatic detec-
tion of functions such as _withdrawFromBank, with-
draw, claimTokens, etc., often reveals highly similar
instruction or control flow patterns, indicating redun-
dant withdrawal logic.

• Abundant External CALLs and Owner Depen-

dency: External calls such as functionDelegateCall(...)
or _stableToken.safeTransfer(...) and _router.swap-
ExactTokensForTokens(...) are all subject to onlyOwner
control, showing that ultimate control over funds is
extremely centralized.

• Lack of Locking/Multisignature: Tools can ob-
serve that there are no multisignature or delayed ex-
ecution functions, implying that the so-called “Stak-
ing” or “Liquidity Pool” does not actually prevent the
Owner from transferring funds at any time.

In summary, these contracts, through carefully designed
multi-layer data structures and extensive function wrappers,
disguise seemingly complex “staking/mining/yield manage-
ment” as a closed backdoor. While users only see attractive
yield figures on the front end, they cannot prevent the Owner
from withdrawing funds at will, potentially resulting in a
rug pull or a situation where funds become unrecoverable.

21

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain and Smart Contracts
	2.2 Code Obfuscations

	3 Taxonomy of Obfuscated Funds Transfers
	3.1 Obfuscation of addr
	3.2 Obfuscation of value
	3.3 Obfuscation of context
	3.4 Obfuscation of log

	4 System Design and Implementation
	4.1 System Overview
	4.2 Definition and Extraction of Obfuscation Features
	4.3 Obfuscation Z-score Model
	4.4 Evaluation of ObfProbe

	5 Real-World Study
	5.1 Prevalence Study
	5.2 Detailed Analysis
	5.3 Case I: MEV Bots
	5.4 Case II: Ponzi Schemes
	5.5 Case III: Fake Decentralization
	5.6 Case IV: Extreme Centralization

	6 Financial Impact Analysis
	6.1 Dataset
	6.2 Comparison of Financial Loss
	6.3 Time Series Analysis

	7 Impact on Existing Tools
	8 Discussion
	8.1 Challenges and Future Work
	8.2 Limitations

	9 Related Work
	10 Conclusion
	References
	A Extremely Centralized Contracts
	A.1 Centralized Permission Control
	A.2 Unreasonable and Arbitrarily Adjustable High Fee / Tax Contracts
	A.3 Contracts Without Genuine Fund Locking

