
Disassembling Obfuscated Executables with LLM

Huanyao Rong∗, Yue Duan†, Hang Zhang∗, XiaoFeng Wang∗, Hongbo Chen∗, Shengchen Duan†, Shen Wang†
∗Indiana University Bloomington

†Singapore Management University

Abstract—Disassembly is a challenging task, particularly for
obfuscated executables containing junk bytes, which is designed
to induce disassembly errors. Existing solutions rely on heuristics
or leverage machine learning techniques, but only achieve limited
successes. Fundamentally, such obfuscation cannot be defeated
without in-depth understanding of the binary executable’s seman-
tics, which is made possible by the emergence of large language
models (LLMs). In this paper, we present DISASLLM, a novel
LLM-driven dissembler to overcome the challenge in analyzing
obfuscated executables. DISASLLM consists of two components:
an LLM-based classifier that determines whether an instruction
in an assembly code snippet is correctly decoded, and a disassem-
bly strategy that leverages this model to disassemble obfuscated
executables end-to-end. We evaluated DISASLLM on a set of
heavily obfuscated executables, which is shown to significantly
outperform other state-of-the-art disassembly solutions.

I. INTRODUCTION

Disassembly, a process of translating machine-readable
bytes into human-readable assembly instructions, is a crit-
ical step of binary reverse engineering, enabling important
downstream tasks such as decompilation [25], [18], binary
rewriting [32], [42], [71] and vulnerability detection [63], [17].
One major challenge in disassembly is correct identification
of instruction boundaries within a byte sequence: due to the
mixed storage of program code and data, or variable-length
instructions such as those of x86, the locations where instruc-
tions start are often hard to determine, leading to disassembly
errors not only in the instructions at the boundaries but also
in the follow-up ones. This challenge has been exploited by
various obfuscation techniques, such as opaque predicate, call
stack tampering, signal-based obfuscation [58], to confuse a
disassembler, which utilize junk bytes to increase the diffi-
culty in delimiting binary sequences. To address this problem,
existing techniques leverage symbolic execution [19], [63],
heuristics [54], [32], [51], [44], [69], or machine learning [57],
[79], [43]. However, their effectiveness has been found to be
rather limited.

A. Limitations of Existing Work

Symbolic execution-based approaches [63] remove junk
binaries within infeasible paths of a program to help determine
instruction start addresses through analyzing the program’s
control and data flows. Their applications to binary deobfus-
cation, however, are hindered by path- and state-explosions as
well as the presence of hard-to-solve path conditions – weak-
nesses exploited by adversarial techniques [76]. A variation
of the approaches, concolic execution [19], analyzes a single
execution trace of a binary executable instead of its whole
program, and therefore is more scalable, but only covers the
portion of the binary sequence related to the execution trace.

Some prior research utilizes manually constructed, domain
specific heuristics to decide the correct instruction bound-
aries [54], [32], [51], [44], [69]. These heuristics are usually
based upon shallow syntactical features, such as unusual op-
code of the instructions recovered from wrong start addresses.
Such approaches tend to be less robust since they rely heavily
on empirical observations and assumptions, which could be
easily broken, either by circumvention or due to the situations
they cannot fit into.

Recently, machine learning (ML) has shown promise in
addressing this problem. An ML-based approach automatically
learns the features of valid and invalid instruction sequences
to identify correctly recovered instructions. For this purpose,
an early work [43] relies on feature engineering and decision
trees. These techniques, however, are found to be inadequate
for comprehensive and accurate detection of instruction bound-
aries. A more recent solution – XDA [57] trains a trans-
former [70] to analyze individual bytes, predicting whether
each of them is the start of an instruction. However, since these
bytes are not decoded first, the model must learn the decoding
by interpreting the raw bytes directly. This limits the model’s
capacity to learn the semantic meaning of the machine code,
as it first has to learn the decoding process. Another state-
of-the-art work is DeepDi [79], which employs superset disas-
sembly [20] to decode all possible addresses, before instruction
validity can be determined with a graph neural network (GNN)
on the instruction flow graph. However, due to the limited
semantic and contextual learning capability of GNN, it has
been demonstrated that DeepDi is vulnerable to dedicated
adversary obfuscation techniques, which drastically drop its
F1 score from 91.64% to 16.67% [80]. A primary reason for
their limitation is their restricted model size, which further
limits their capability to understand the complex semantics of
decoded assembly instructions. One might suggest increasing
the model size and the training dataset; however, expanding
their dataset to trillions of bytes and their parameter size
to billions, similar to current state-of-the-art large language
models, is simply impractical. Therefore, a transfer learning
approach that fine-tunes the current large language model is a
more promising solution by comparison. Finally, all aforemen-
tioned ML methods completely exclude the more traditional
but widely-used and time-tested disassembly approaches (e.g.,
recursive disassembling algorithm), which unnecessarily lose
some benefits. For example, traditional disassembly provides
the insight that if one instruction is valid, its following in-
structions are also likely to be valid, while any overlapping
instructions are likely to be invalid. However, these methods
do not take advantage of this insight.
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B. Our Method

Our observation is that an experienced human expert
usually can effectively recognize instruction boundaries: dis-
assembled instructions at incorrect offsets tend to deviate
significantly from their contexts, either at the syntax level
or at the semantic level, and can therefore be captured by
human experts. Existing approaches, whether heuristic-based
or ML-powered, are not designed to consider semantic in-
formation in valid instruction identification and have limited
capability in doing so. The recent advancement of generative
large language models (LLMs), however, brings unprecedented
opportunities to find a much more effective solution, as LLMs
are meant to predict missing tokens from their contexts, and
have demonstrated a remarkable comprehension ability closer
to that of human analysts than all existing techniques [70],
[28], [13], [68], [24], [61]. One straightforward solution is thus
to let LLM inspect the whole byte sequence and decide the
instruction boundaries (similar to XDA [57]), or to enumerate
all possible disassembly results with different offsets and then
rely on LLM to pick the correct ones (similar to DeepDi [79]).

However, such a direct application of the LLM does not
fully leverage its capabilities for the following reasons. (1)
Presenting machine code in bytes or in superset disassembly
does not convey their semantic information in the most ef-
fective form: the LLM may struggle to understand the raw
bytes directly, or may become overwhelmed by the redundant
information in superset disassembly. (2) Such a naive approach
can be quite expensive: it requires inspecting many potential
addresses, resulting in a large number of queries to an LLM,
which incurs significant delays or monetary costs. (3) Current
decoder LLMs are designed for text generation tasks. However,
the task of identifying instruction validity is more akin to
a classification task, which is generally handled by encoder
models. (4) Current LLMs are not trained on a large corpus
of valid and invalid assembly text, which limits their direct
capability to identify such validity.

To address these problems, our insight is that disassembly
errors due to incorrect instruction boundaries are not preva-
lent (e.g., due to the performance cost, usually only some
important code snippets will be obfuscated). In a typical
reverse engineering session, a traditional disassembler (though
not resilient to obfuscation) can already recover most valid
instructions, while human analysts only need to fix errors in
limited regions. Therefore, our idea is to integrate the LLM
into a traditional disassembler - such a hybrid system mimics
the human expert’s reverse engineering process automatically
and efficiently. Based on this idea, we propose DISASLLM,
a systematic disassembly approach resilient to obfuscation,
built upon an LLM-based classifier capable of identifying the
validity of decoded instructions. DISASLLM consists of two
components: an LLM-based validity classifier that determines
whether instructions are correctly decoded and a disassembly
strategy that leverages this classifier to disassemble obfuscated
executables end-to-end efficiently and effectively.

1) LLM-based Validity Classifier: To train this model, we
fine-tuned Llama 3 8B [15] using the method proposed by
LLM2Vec [21], which converts a decoder model into an
encoder model for NLP understanding tasks, including the
token classification we require. This method allows us to
address the problem (3) mentioned previously.

To prepare the unsupervised text dataset for the fine-tuning,
we first compiled source functions from AnghaBench [27]
and collected all instruction boundary addresses as the ground
truth. We then disassembled these compiled binaries according
to the ground truth into assembly text, including validly
decoded instructions and invalid ones in the comments. This
allows the model to learn the patterns of both valid and invalid
instructions. Additionally, to further train a classifier, we gather
the supervised dataset by disassembling the compiled Ang-
haBench binaries using our disassembly strategy (introduced
soon). However, we replace the classifier that should result
from this training task with a classifier based on the ground
truth of the instruction addresses, ensuring the classifier’s
results are always correct. The dataset is then obtained by
recording all outcomes of these classifications. These training
process allows us to solve problem (4).

2) Our Disassembly Strategy: Given an obfuscated binary
executable, DISASLLM disassembles its code memory region
(i.e., the .text section) using a combination of linear disas-
sembly and recursive disassembly to obtain an initial result.
Based on this result, DISASLLM then verifies the validity
of each decoded instruction from the initial disassembly and
tries to fix the incorrect disassembly if applicable. To do this
both efficiently and effectively, instead of checking all decoded
instructions simultaneously or each instruction individually,
DISASLLM uses a pre-filter to examine N adjacent instruc-
tions at once to confirm the validity of instructions with very
high or low probability values. Based on the pre-filter results,
DISASLLM then checks the remaining instructions one by
one. Such optimized design aims to address the problem (2)
mentioned previously.

To best represent the semantic information for an LLM to
check validity, in order to verify the validity of one or more
instructions, DISASLLM extracts all related instructions in the
disassembly result with a breadth-first search algorithm, such
as those with reference relations. Additionally, since instruc-
tion fixing and checking are conducted interchangeably, related
instructions that are already fixed can aid in identification. The
method addresses the problem (1) of directly applying LLM.

3) Evaluation Results: We evaluated DISASLLM on a
set of obfuscated executables with heavily inserted junk
bytes. Compared to the state-of-the-art approach, DISASLLM
achieved an approximate 40% improvement in detecting the
first instruction after the junk byte region. We also present
the relevant metrics of our classifier model, both when used
in conjunction with the disassembly strategy and when used
independently, demonstrating its effectiveness in identifying
valid instructions.

4) Contributions: We have proposed DISASLLM and
made the following contributions to the field of disassembly:

• We trained an LLM-based classifier model to identify
the validity of instructions within a snippet of decoded
assembly code by treating it as a token classification
problem.

• Building upon the validity identification capability of
the model, we propose a disassembly strategy that
leverages the model to disassemble obfuscated binary
executables.
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• We evaluated DISASLLM on a benchmark based on
OLLVM containing a set of obfuscated executables.
The results show that it significantly outperforms other
disassembler counterparts.

II. BACKGROUND

A. Binary Disassembly

Binary disassembly translates the raw bytes into human-
readable assembly instructions, serving as the vital first step
of binary reverse engineering. We discuss some common
disassembly techniques.

Linear and recursive disassembly. Linear disassembly se-
quentially processes each instruction. After decoding one
instruction, the disassembling continues from the next byte
which is treated as the start of the subsequent instruction.
This strategy exploits the continuity of compiler code gen-
eration. Recursive disassembly, on the other hand, processes
the instructions based on observable control flows. For exam-
ple, after decoding a jump instruction with a constant target
address, the disassembler assumes that the target address starts
a new instruction and continues disassembling from there.
These two strategies could be combined to achieve the optimal
results [54], where the code “holes” not disassembled by the
recursive disassembly are handled by linear disassembly (e.g.,
used by Angr [63]).

However, these traditional approaches can be problematic
when data or junk bytes present (e.g., at the next byte or
the jump target address), whose decoding leads to invalid
instructions. Even worse, the addresses of invalid instructions
can overlap with the valid ones, causing the latter to be
disregarded. Nonetheless, one interesting phenomenon of this
traditional disassembly process is that even if one invalid
starting address is disassembled, a correct starting address
will eventually be encountered after several wrongly decoded
instructions (e.g., imagine a 7-byte sequence containing 1
leading junk byte and 2 subsequent valid instructions, while
it may be wrongly disassembled into 3 invalid instructions,
starting from the 8th byte the disassembly will return to
the normal). This phenomenon is referred to as the “self-
repairing” [48], increasing the disassembly stability but also
making the disassembly errors more stealthy.

Disassembly based-on valid instruction identification. To
overcome the weakness of traditional disassembly, learning-
based or heuristic-based strategies are proposed to decide the
validity of the disassembled instruction sequences and the
correct instruction boundaries, based on specific features. How-
ever, as described in §I-A, current approaches show limited
effectiveness in defeating obfuscation.

B. Large Language Model

Based on vast amounts of training data, the large lan-
guage model (LLM) [70] marks a significant advancement in
natural language processing (NLP) and program code under-
standing [61], [24]. LLMs can be categorized into encoder
models and decoder models. Encoder models primarily focus
on understanding the text, while decoder models are mainly
designed for text generation.

Token classification [11], which assigns labels to tokens
in a text, is one task of encoder models. For example, named
entity recognition labels a text entity with predefined categories
such as person names, organizations, locations, and dates. This
labeling takes into account both the entity and its contexts.

A recent work, LLM2Vec [21], shows that a decoder model
can be converted into an encoder model through fine-tuning.
The technique starts with enabling bidirectional attention of
the transformer so that the preceding tokens can attend to the
following tokens in the self-attention layer. However, since the
generative decoder model is not trained with such bidirectional
attention, the effectiveness may drop for such change. To
address this, the LLM is fine-tuned in an unsupervised manner
using a corpus of texts as the dataset, just like the pre-training
step, but instead of training to predict the next token given the
preceding tokens, LLM2Vec leverages the technique known
as masked next token prediction (MNTP), which trains to
predict the randomly masked tokens given the unmasked ones
in a training token sequence, a training approach commonly
used by encoder model [28]. With the fine-tuned model, the
embedding vector of one or more tokens under the text context
can be computed, which can then be used to train another
classifier model for the token classification task. The encoder
model enables more effective use in token classification tasks,
as demonstrated in their results [21]. In the following sections,
we will describe how to utilize this technique to construct our
validity classifier model.

III. MOTIVATION

In this section, we exemplify the limitations of state-of-
the-art disassemblers in detail and demonstrate how LLMs can
help, which motivates our work.

A. Limitations of Existing Work

DeepDi [79] is the state-of-the-art disassembler resilient
to obfuscation due to its superset disassembling and GNN-
based valid instruction sequence identification. However, ob-
fuscation designed to thwart disassembly can still drastically
reduce its effectiveness. To show this, we compile a simple
C program containing all C syntactic features and obfuscate
the resulting binary by (1) flattening the control flow [45]
with OLLVM [41], and (2) inserting the junk bytes between
basic blocks. This obfuscation puts junk bytes in unreachable
code regions, testing the disassembler’s instruction boundary
identification ability. DeepDi’s performance on this binary is
summarized in Table I. We define the false negative (FN)
as “valid instructions not shown in the disassembly result”,
while false positive (FP) as “invalid instructions overlapping
with the valid ones shown in the disassembly result”, as non-
overlapping invalid instructions do not affect the disassembly
of valid ones. Precision, recall, and the F1 score are defined ac-
cordingly. The “All” row considers all instructions in the binary
when computing the above metrics, while the “Junk” row only
includes the first valid instructions following the inserted junk
bytes in the statistical scope, because they are most heavily
affected by the junk bytes, how well they can be disassembled
directly reflects the disassembler’s anti-obfuscation ability. As
seen in Table I, though DeepDi achieves good metrics in the
“All” row, its performance significantly reduces in the “Junk”
row. This suggests that DeepDi can successfully disassemble
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TABLE I: DeepDi on the small obfuscated binary.

Precision Recall F1

All 0.94 0.92 0.93
Junk 0.57 0.47 0.52

Precision = TP / (TP + FP), Recall = TP / (TP + FN)
F1 = 2 * Precision * Recall / (Precision + Recall)

most valid instructions whose boundaries are not impacted by
the junk bytes, but falls short when handling the obfuscated
regions.

B. LLM’s Potential

A key observation is that invalid instructions decoded at
the wrong offsets exhibit a very different appearance compared
to valid instructions within the context. Thus, an experienced
human reverse engineer can usually discern invalid instructions
from valid ones easily. Thanks to the self-repairing feature
(§II-A), even with junk bytes, traditional disassembly algo-
rithms can still recover many valid instructions, albeit mixed
with invalid ones. Therefore, in principle, a human expert can
inspect these disassembly results to identify and correct the
invalid instructions. However, this process requires substantial
manual effort and is time-consuming, especially for large
binaries.

Our intuition is to replace human experts with an LLM,
given its outstanding capabilities of comprehending semantic
information in both natural languages [13] and programming
languages [24], including assembly code [38]. The advance-
ments of LLMs provide a unique opportunity to develop a
system resembling the human-involved disassembling process,
while fully automatic and efficient.

IV. PROBLEM STATEMENT

DISASLLM aims to disassemble executables obfuscated
to thwart the disassembly process. For example, junk bytes
are inserted in the code region of such an executable, causing
the linear disassembly approach to decode invalid instructions
that may even overlap with valid ones. Additionally, opaque
predicates can cause a conditional jump, which would never
actually occur, leading to the recursive disassembly to decode
the unreachable branch target and potentially overlapping with
valid instructions. To sum up, DISASLLM is robust enough
to handle almost all types of obfuscation designed to defeat
disassembly, such as opaque predicate, call stack tampering,
signal-based obfuscation [58], control flow flattening [45], that
are combined with junk byte insertion.

However, DISASLLM does not aim to address self-
modifying code or packing. In these scenarios, an analyst
should first apply other approaches [60], [22] to extract the
recovered code bytes before using our system. Additionally,
DISASLLM is focused solely on disassembling the executable
rather than other downstream deobfuscation tasks (e.g., recov-
ering the original program from VM-based obfuscation [78]).

V. THE DISASSEMBLY STRATEGY

Figure 1 illustrates the overview of DISASLLM. Given
a binary executable, DISASLLM first performs an initial

Initial Disassembly

Binary Executable

Checking Disassembly

Fixing Disassembly
(Reverse & Forward Infilling)

LLM Classifier

Outputs

Figure 1: Workflow of DISASLLM. The hollow arrow denotes
the sequential procedure. The solid arrow represents the invo-
cation with information returned.

disassembly on its code region (§V-A). Then, our system
checks the validity of each decoded instruction (§V-B), during
which it also attempts to fix disassembly errors when certain
conditions are met (§V-C). Both procedures invoke the LLM-
based classifier to check the validity of one or more instruc-
tions by representing the decoded instructions as text (§V-E).
To enhance the efficiency of using LLM, DISASLLM employs
a batching mechanism to exploit the parallel capabilities of
GPUs (§V-D). Once all decoded instructions are checked and
corrected, DISASLLM outputs the final disassembly results.

A. Initial Disassembly

Given the raw bytes of the code region of a binary
executable, DISASLLM disassembles it using a combination
of linear disassembly and recursive disassembly. The algorithm
is essentially the same as recursive disassembly, but for each
branch instruction, such as jmp and ret, the next instruction
starting at its end address is also considered a candidate.
Additionally, we employ a more aggressive recursive approach
that tracks immediate numbers appearing in non-branch in-
structions, similar to [32].

The main reason for relying on the traditional approach
instead of the more aggressive superset disassembly [20],
which decodes every possible address, is two-fold. First,
our linear plus recursive disassembly approach can produce
sufficient results as a starting point more efficiently than super
disassembly. This is due to the self-repairing feature of the
traditional disassembly approach - even when an executable
is heavily obfuscated with junk bytes inserted in the code
region, our disassembly result still contains many validly
decoded instructions. Second, as demonstrated later in Section
§VII-C, the relevant instructions from traditional disassembly
are sufficient to identify an instruction’s validity correctly. In
contrast, superset disassembly provides excessive redundant
information that could interfere with performance.

After the initial disassembly, DISASLLM constructs a
graph where the vertices represent basic blocks (sequences
of decoded instructions), and the edges represent references
between these blocks. We refer to this graph as the disassembly
graph. The references include not only control flow relations
but also references caused by immediate numbers due to a
more aggressive recursive disassembly algorithm. Addition-
ally, since DISASLLM also incorporates linear disassembly,
the block resulting from the continued decoding of a non-
conditional branch instruction creates a special edge. This edge
connects the source block containing the branch instruction to
the block starting at the end address of the branch instruction.
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Only the first instruction of each block can be referenced.
Therefore, during the disassembly process, if an instruction in
the middle of a block is referenced, the block must be split into
two blocks, with an edge connecting them. Such edges allow
the breadth-first search algorithm to find related instructions
when constructing the snippet for the classification.

B. Checking Disassembly Results

With the disassembly graph obtained from §V-A, DIS-
ASLLM performs overlap minimization (described later in
§V-E2). Following this, DISASLLM verifies the validity of
each decoded instruction. Given a piece of decoded assembly
instructions in text form, our task is to classify the validity of
one or more instructions within this snippet. We consider this
task a classical token classification problem, such as named
entity recognition, which aims to classify which entity each
word in a sentence belongs to. These tasks are highly similar
in the sense that we can consider the instruction as the word
and the validity as the entity.

We can consider two naive approaches to classify each
instruction disassembled from §V-A. 1) We can represent
all blocks in the entire disassembly graph as texts for the
classification of each instruction. However, for large binaries
consisting of thousands of instructions, the text will exceed the
maximum token length supported by the model. 2) Instead of
classifying all instructions individually, we can classify each
instruction individually. This approach, in principle, can be
more effective than the previous one because identifying a sub-
sequent instruction can leverage the preceding validity results
of other instructions, providing richer contextual information.
However, this method can be too slow for large binaries.

Therefore, we propose a trade-off between these two meth-
ods. Firstly, DISASLLM checks N = 16 multiple adjacent
instructions simultaneously to conduct a prefilter on the dis-
assembled instructions. We obtain the probability of each in-
struction being valid by obtaining the sigmoid [33] value from
the classifier. In the prefilter stage, DISASLLM empirically
sets the validity of instructions with a probability p > 0.95 as
valid and p < 0.05 as invalid. According to our evaluation in
§VII-B, these instructions already constitute most of the total
number of instructions in the disassembly graph. Additionally,
DISASLLM deletes the blocks in which all instructions are
invalid, removing most invalid overlapped blocks. After block
deletion, overlap minimization is further performed to reduce
the overlapped regions in the new disassembly graph. After the
prefilter stage, we check the remaining instructions one by one.
This allows DISASLLM to exploit the validity information of
any related instructions classified during the prefilter stage.

To examine the validity of instructions, presenting only
the instructions themselves is insufficient; their related in-
structions are also required as input to provide contextual
information. These related instructions are obtained by con-
ducting a breadth-first search starting from the instructions
to be examined. To create the graph for the BFS task, we
consider the disassembly graph to be a graph with instructions
as vertices. In this graph, an instruction within a block is
connected to the next instruction in the block, and the edges
that connect blocks are now used to connect the instructions.
When performing BFS, DISASLLM traverses both forward

and reverse edges, ensuring that given an instruction I , both the
instructions referenced by I and the instructions that reference
I are traversed. The BFS stops when the number of related
instructions reaches a limit, which we have empirically set
to 32, as this should provide sufficient contextual information
for identifying validity. DISASLLM then extracts the blocks
containing instructions visited by BFS. These blocks can
either be the original blocks from the disassembly graph if
all instructions within the blocks are visited or split blocks
if only part of the instructions are visited. These blocks are
represented as texts for token classification to check validity.

C. Fixing Disassembly Results

Note that not all authentic instructions are decoded in the
disassembly graph; instead, these instructions can overlap with
invalid ones in the graph. Therefore, DISASLLM must correct
the disassembly results obtained from §V-A rather than merely
classifying the validity of each instruction.

To achieve this, during the validity checking described
above, DISASLLM keeps track of the validity of the memory
regions. A valid region is defined as a region occupied by
instructions already identified as valid. In contrast, an invalid
region is a region that does not contain any parts of valid
or unidentified instructions (i.e., it only contains invalid in-
structions). Other regions are considered unidentified. When
an invalid region is produced between two valid regions,
DISASLLM attempts to find the correct disassembly within
the invalid region. All invalid instructions within this region
are removed from the disassembly graph. DISASLLM first
attempts reverse infilling to find the valid instruction sequence
that ends at the start address of the valid region. Next,
DISASLLM conducts forward infilling to find any missing
blocks in the invalid region.

1) Reverse Infilling: The re-synchronization from invalid
instructions in the invalid region to valid instructions in the
valid region may be attributed to the self-repairing feature of
the disassembly process mentioned earlier. This also suggests
that there might be a hidden instruction sequence ending at the
start address of the valid region. The reverse infilling process
aims to find this sequence.

To find all possible instructions that end at a particular
address a, we must decode all possible addresses from a− n
to a − 1, where n = 15 is the maximum instruction length
in the x86 architecture, and keep only the instructions that
end at a. Addresses that have already been identified as
invalid instructions are not included. The process can be
continued recursively on the start addresses of these newly
found instructions. The results can be considered as a tree,
where the root node is a, and each child node represents an
address decoded into an instruction ending at the address in its
parent node. We denote this process as reverse disassembly.

Therefore, given the start address of a valid region, DIS-
ASLLM conducts a BFS on this tree to obtain a maximum
of N instructions, where N = 16 is the maximum number of
instructions identified at once in the prefilter step. DISASLLM
then obtains the related instructions for these N instructions
using the previously mentioned method, gets the probability
of each instruction being valid, and retains only those with
p > 0.95, similar to the process in the prefilter step. By
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identifying a valid instruction sequence before the valid region,
the start address of the valid region can be extended, and this
process is continued recursively at the new start address.

Once no new valid instruction is identified, the reverse
infilling switches to single instruction mode. In this mode,
instead of performing reverse disassembly recursively, DISAS-
LLM only finds all instructions ending at address a, where a is
the start address of the latest valid region. The validity of these
instructions is classified similarly to obtain probability values.
If none of these values exceed 0.5, DISASLLM stops the
reverse infilling process. Otherwise, it selects the instruction
with the highest probability as the valid one and recursively
continues the single instruction mode with the new start
address of the valid region.

2) Forward Infilling: After completing reverse infilling
on an invalid region between two valid ones, DISASLLM
begins forward infilling. This step aims to find small valid
blocks within the invalid region that are too small to be
resynchronized with the number of instructions required by the
self-repairing (e.g., containing fewer than three instructions).

To start forward infilling, DISASLLM disassembles one
block at the first non-invalid address in the invalid region and
identifies the validity of each instruction in the block. The
process also works in two stages: a prefilter that confirms the
validity of highly certain instructions and a single instruction
checker that examines the remaining instructions one by one,
ensuring all instructions are identified. If any valid instructions
are detected, the process continues from the end of the last
valid instruction; otherwise, it continues from the next non-
invalid address. The process stops when the end of the invalid
region is reached.

3) Example: To illustrate the effect of disassembly fixing,
we use a simplified example snippet extracted from a real
obfuscated binary, as shown in Listing 1. On the left, we
present the initial disassembly results that have already been
checked using the method described in §V-B. The instructions
in the green frame are identified as valid, designating the
corresponding area as a valid region. Conversely, the red frame
marks the invalid region containing invalid instructions. Since
the invalid region lies between two valid regions, DISASLLM
attempts to fix the disassembly within the invalid region. The
right part illustrates the same regions after the instructions
in the invalid region have been fixed, assuming the classifier
model functions correctly. The lower blue rectangle marks the
instruction sequence obtained from reverse infilling, while the
upper blue rectangle marks the short block recovered from
forward infilling.

D. Batching

To further improve the efficiency of DISASLLM, we
exploit the parallel capabilities of GPUs by using the batching
mechanism supported by the transformer library [73]. For
each of the processes described above, classification tasks
are not executed immediately. Instead, they are pushed into
a queue with the data required to post-process the results
after classification. When the number of items in the queue
reaches M , the maximum batch size, DISASLLM pops out
the batch for classification and then post-processes the result
probabilities using the corresponding data.

Listing 1 An example of disassembly fixing.
mov DWORD PTR [rbp-0x8], eax
mov DWORD PTR [rbp-0x4], 0x8
jmp 0x401007

mov edi, eax
rex.RB cld
(bad)
add BYTE PTR [rax], al
add bl, ch
(bad)
lea edi, ds:0x402000

mov al, 0x0
call 0x401000

mov DWORD PTR [rbp-0x8], eax
mov DWORD PTR [rbp-0x4], 0x8
jmp 0x401007

db 0x89
mov DWORD PTR [rbp-0x4], 0x17
jmp 0x401007

db 0xA9
lea rdi, ds:0x402000

mov al, 0x0
call 0x401000

E. Representing Blocks of Instructions

Given (split) blocks extracted from the disassembly graph
using the previously mentioned method, we must represent
them as text to leverage LLM for the code understanding
task. The blocks should first be sorted in ascending order
according to their start addresses so that when presented as
text, they also follow the same order. Representing a block
is a straightforward process of displaying all its instructions
in Intel syntax. Additionally, for each instruction with extra
information, a comment is appended after the instruction.
For example, if the instruction is already known to be valid
or invalid, a comment ; valid or ; invalid can be
appended. However, unlike assembly code typically written
by programmers, these blocks have some special features that
need to be tackled.

1) Handling Gap: The extracted blocks can be noncon-
tinuous; in other words, in the sorted list of blocks B, the
start address of block B[i + 1] is larger than that of its
preceding block B[i]. In such cases, we must indicate this
gap in the text to inform the LLM. To achieve this, we mark
each continuous region’s start and end addresses consisting
of one or more adjacent blocks preceding and following
the instructions. Examples of the text representation of these
regions can be found in Figure 2. The start address is marked
like a label, while the end address is marked in a comment.
For example, the region 0x401000-0x401006 consists of
two adjacent blocks with ranges 0x401000-0x401004 and
0x401004-0x401006. Moreover, if a block in the middle
of the region is referenced by any instruction in the list of
blocks (e.g., jmp), its start address should also be marked.

2) Handling Overlap: Another possible cause is that blocks
can overlap with each other: in the sorted list of blocks B, the
start address of B[i + 1] is smaller than the end address of
B[i]. This can frequently occur if the binary is obfuscated,
such as when an opaque predicate causes disassembly desyn-
chronization [69] (as shown in Listing 2). To present such
overlap more explicitly, we use a special technique to convey
the overlap information in the text. Firstly, DISASLLM groups
all overlapping blocks in a transitive relation. In other words,
two blocks that do not overlap are still in the same group if they
both overlap with another common block. This problem can
be considered a variant of the problem of merging overlapping
intervals [7]. We describe the details of this algorithm in
§V-F. The strategy described in §V-E1 represents groups with
a single block. For groups with more than one block (i.e.,
those with overlaps), DISASLLM wraps them using a special
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Listing 2 An example of overlap minimization.
0x401000:
cmp eax, eax
je 0x401007
; 0x401004

<<<<<<<
0x401004:
nop
int3
call 0x4011c3
add BYTE PTR [rdi+0x1], bh
; 0x401011
=======
0x401007:
mov eax, 0x1
mov edi, 0x1
; 0x401011
>>>>>>>

0x401011:
movabs rsi, 0x402000
mov edx, 0xe
syscall
; 0x401022

0x401000:
cmp eax, eax
je 0x401007
nop
int3
; 0x401006

<<<<<<<
0x401006:
call 0x4011c3
add BYTE PTR [rdi+0x1], bh
; 0x401011
=======
0x401007:
mov eax, 0x1
mov edi, 0x1
; 0x401011
>>>>>>>

0x401011:
movabs rsi, 0x402000
mov edx, 0xe
syscall
; 0x401022

notation similar to the git conflict marker [10]. An example
of such representation is shown in the left part of Listing 2,
where the block with the range 0x401004-0x401011 and
the block with the range 0x401007-0x401011 overlap with
each other and are wrapped with markers.

However, simply using such a representation does not
effectively demonstrate the overlap. For example, if block
b1 overlaps with block b2, but only a few of the ending
instructions in b1 overlap with b2, while b1 is a large block.
In this case, using the conflict marker to wrap the two whole
blocks does not convey the overlap in the most representative
manner. Instead, we should minimize the overlap region as
much as possible by splitting the overlapped blocks. To achieve
this, we apply the same algorithm for grouping overlapping
intervals described in §V-F to all instructions in the overlapped
group (i.e., multiple transitive overlapped blocks), treating each
instruction as an interval. This results in a list of groups
consisting of possibly overlapped instructions. For all groups
consisting of multiple instructions (i.e., where the overlap
exists), we split the basic block at both the start and end
addresses of the group to minimize the overlapped regions.

F. Group Overlapping Intervals

Problem statement. The input of the algorithm is a list of
intervals I = {(ai, bi) | i = 0, 1, 2, . . . , n− 1}, where n is the
number of intervals. In our scenario, the interval is the start
address and the end address of either an instruction or a block.
We consider two intervals (ai, bi) and (aj , bj) as overlapped
if ai ≤ aj < bi or aj ≤ ai < bj . Our definition of overlap is
different from others [7] in the sense that we do not consider
aj = bi or ai = bj as overlap, because adjacent instructions
and blocks are not overlapped ones in our scenario. The task
is to group all overlapped intervals in I , where the overlap
relation is transitive, so two intervals that do not overlap with
each other should be in the same group if they both overlap
with another interval.

Algorithm. To achieve this, we firstly sort I according to ai

in ascending order, and iterate over the sorted list. We always
maintain b′, the maximum b value of the last group. If the a
of the next interval is smaller than b′, we add it to the last
group and update b′; otherwise, create a new group that only
contains this interval. The details are shown in Algorithm 1.

Algorithm 1 Group Overlapping Intervals

Require: I = {(ai, bi) | i = 0, 1, 2, . . . , n− 1}
1: sort I according to a in ascending order
2: b′ := I[0].b
3: g := {I[0]}
4: G := {}
5: for i = 1 to n− 1 do
6: if I[i].a < b′ then
7: g.append(I[i])
8: b′ := max(b′, I[i].b)
9: else

10: G.append(g)
11: b′ := I[i].b
12: g := {I[i]}
13: end if
14: end for
15: G.append(g)
16: return G

VI. THE LLM-BASED VALIDITY CLASSIFIER

In this section, we outline the process of fine-tuning Llama
3 [15] to transform it into an encoder model capable of
identifying instruction validity through token classification,
utilizing techniques proposed in LLM2Vec [21]. First, we
describe the forward propagation process, explaining how the
probability outputs for validity are generated from the input
text snippet of decoded assembly instructions (§VI-A). Next,
we describe the process of fine-tuning the decoder transformer
model to develop an encoder model specialized in identifying
instruction validity. This encoder model can compute the
embedding vector of an instruction within the context of a
snippet (§VI-B). Finally, we explain the training process for
the last linear classifier layer, which generates the probability
values for instruction validity (§VI-C).

A. Forward Propagation

We utilize the forward propagation method proposed by
LLM2Vec [21], which is generally the same as the forward
propagation used in the encoder model for token classification,
with slight variations.

First, given a snippet of decoded assembly text with the
instructions to be checked separated (i.e., in the form of
“words”), the text is tokenized using the fast tokenizer [53].
This allows us to determine which “word” each token belongs
to. Additionally, a special token <s> is added at the beginning
to mark the start of the sequence. These k tokens are then input
into the transformer model [70], so that the last hidden layer
outputs k vectors matching each of the input tokens. For a
token at index i, its embedding vector in the last hidden layer
is denoted as ei.

The embedding of an instruction constituted by n tokens
at indexes {i0, i0 + 1, ..., i0 + n− 1} is the mean value of the
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corresponding output vectors in the last hidden layer, computed
as follows:

e =

∑i0+n−1
i=i0

ei−1

n

It is important to note that ei−1 is used instead of ei here:
instead of using the output vector of each token, the output
vector of the previous token of each token is used.

Finally, the embedding vector of the instruction is input into
a linear classifier with an input size equal to the dimension of
e and an output size of 1. The sigmoid function [33] is then
applied to the output value to calculate the final probability
indicating the validity.

B. MNTP Training

Similar to LLM2Vec, we fine-tuned the model using
masked next token prediction (MNTP). However, instead of
using texts from English Wikipedia, the model is trained on
assembly code gathered from compiled binaries. To generate
a large dataset of binaries, we used AnghaBench [27]. This
benchmark consists of a substantial number of individually-
compilable functions extracted from open-source repositories.
We compiled these functions into binaries at different op-
timization levels. Additionally, because normal compilation
generally does not insert non-code bytes into the code region,
we also compiled the functions with junk byte insertion
between basic blocks, using the same obfuscation approach
described in §III-A. The ground truth instruction addresses
were also gathered by modifying the source code of the clang
assembler [46], [6].

For each generated binary, we disassembled it according
to the ground truth addresses to obtain all valid instructions.
Additionally, we decoded at incorrect addresses to obtain
invalid instructions, placing these invalid instructions into
comments. This included addresses of non-code bytes as
well as addresses within the middle of valid instructions. An
example snippet of the assembly text used for training is
shown in Listing 3. Invalid instructions are decoded at all
non-code byte addresses, and one random offset in the middle
of each multibyte valid instruction is selected to decode an
additional invalid instruction. We do not select all possible
offsets within the valid instructions because this would produce
too many invalid instructions, making the dataset excessively
large and the instructions unbalanced. The validity of each
decoded instruction is also marked at the end of the line with
a comment (i.e., ; valid and ; invalid). Besides, each
address referenced by any instruction in the text is labeled with
its hexadecimal address value (e.g., 0x29f3:).

This form of the dataset aims to enable the model not only
to learn to be an encoder but also to become more familiar with
both valid and invalid assembly code. According to Llama’s
reports on how the pretrained dataset is gathered [67], [68],
[61], the dataset includes only publicly available code and
does not contain a large amount of assembly code generated
by the compiler, let alone invalidly decoded instructions in
the executable. Therefore, this fine-tuning aims to address and
complement this deficiency.

Listing 3 Part of the text in the MNTP dataset.
.byte 0xc9 ; leave ; invalid
.byte 0x88 ; mov bl, ch ; invalid
jmp 0x29f3 ; valid
; offset 1: add ch, bl ; invalid
jmp 0x29f3 ; valid
; offset 1: add byte ptr [rax - 0x75], cl ; invalid

0x29f3:
mov rsp, qword ptr [rbp - 0x98] ; valid
; offset 2: movsd dword ptr [rdi], dword ptr [rsi] ; invalid

The training settings are generally the same as those in
the original work of LLM2Vec [21]: the MNTP fine-tuning
is performed using LoRA [34] with r = 16 and a masked
probability of 0.2. Additionally, we increased the total number
of training steps from 1,000 to 100,000 to allow for a longer
training period. This is necessary because our dataset contains
much more tokens than the English Wikipedia dataset in total.

C. Classifier Training

After MNTP fine-tuning, we can compute the embedding
of an instruction within a snippet of decoded assembly in-
structions. Using this embedding, we can then train a linear
classifier to identify the validity of the instruction. We follow
the practice of LLM2Vec [21] by training only the parameters
of the linear classifier while keeping the decoder transformer
model frozen. However, since we only have two labels, one
neuron with a sigmoid function [33] is sufficient, instead of
using softmax with two neurons in the last layer.

The supervised dataset used to train the classifier con-
sists of entries where each text is split into “words” with
corresponding labels, similar to most datasets used in token
classification problems, such as [62]. In our context, the text is
an assembly code snippet, and the assembly instructions with
their validity labels are separated as “words”. A simplified
example of such an entry in the dataset is shown in Listing 4.
Each region separated by horizontal lines specifies a “word” in
the text, with the corresponding label on the right-hand side.
The labels 0 and 1 represent valid and invalid instructions,
respectively, while the label -100 indicates “words” that are
not considered when computing the loss function.

Listing 4 An example snippet in supervised dataset.
0x8279c:
xchg esp, eax

sub bh, bl

jnp 0x82768

0x827a1:

and al, 0x24

or byte ptr [rax], al

add byte ptr [rax], al

jmp 0x827e8

0x827aa:

loop 0x827f4

mov eax, dword ptr [rsp + 0x10]

bswap rax

0x827b3:
mov qword ptr [rsp + 0x38], rax
mov rax, qword ptr [rsp + 0x28]

.
-100

0

0

-100

0

0

0

1

-100

0

0

1

.
-100
.
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To obtain this dataset, a supervised dataset is gathered to
be specialized for the task required by the disassembly strategy
of DISASLLM. To achieve this, we use the same disassembly
strategy described in §V on the same binaries used in MNTP
training, but replace the validity classifier with the ground
truth, ensuring it always provides the correct validity. Each
time the classifier is invoked, the queried assembly snippet
is split so that each instruction being checked becomes a
single word. These checked instructions are labeled with the
ground truth validity value: 0 for invalid and 1 for valid.
For other texts, the label is marked as -100 to inform the
trainer that the word is not considered in the loss function.
These include not only non-instruction text such as address
labels or overlap markers, but also instructions not checked
by the classifier (e.g., xchg esp, eax in Listing 4). Such
split texts, along with the corresponding labels, are recorded
as an entry in the dataset. In this way, we can construct the
most appropriate behavior for the classifier to learn. When
applied to all binaries of AnghaBench, this approach produces
an excessive number of dataset rows required by the linear
classifier learning. Therefore, we randomly select a subset of
the results.

VII. EVALUATION

Implementation. We implement DISASLLM in 2,000+ lines
of Python code, along with 200+ lines of Python code to gather
the training data. We use Capstone [12] as the underlying
disassembler engine that decodes a byte sequence into an
instruction. To implement the disassembly method described in
§V, we wrap the disassembly graph in a Python class, exposing
an efficient interface for basic block insertion, modification,
and deletion. To implement the batching mechanism (§V-D),
instead of sharing one queue for classification tasks required
by different components, DISASLLM only shares the same
queue for classification tasks that have same form of post-
processing. For example, the classification tasks requested
by the prefilter step are in a different queue from those
requested by the reverse infilling. Additionally, DISASLLM
uses a Python abstract interface to represent the classifier
primitive, which can either be the LLM-based validity classifier
used in real disassembly tasks or one that checks the validity
according to the ground truth directly, which is used to gather
training data as described in §VI-C.

Settings. We ran all of our experiments on an Ubuntu 22.04.4
LTS system equipped with an NVIDIA H100 GPU and an
AMD EPYC 9124 16-Core Processor.

Research questions. In the evaluation part, we explore the
following research questions through experiments.

• RQ1: How effective is DISASLLM to disassemble ob-
fuscated executables compared to other disassemblers?

• RQ2: How accurate is the LLM-based validity clas-
sifier when it is used by the different components of
DISASLLM described in §V?

• RQ3: How effective is our fine-tuned model for iden-
tifying valid instructions when it is used alone?

• RQ4: How fast is DISASLLM for the disassembly
task?

A. Comparison with Other Disassemblers (RQ1)

Benchmark. We use the same set of real-world open-source
programs as used by DeepDi [79], which contains a wide range
of targets ranging from cryptography libraries (openssl) to
SQL database engines (sqlite3). Each program is compiled
and obfuscated in the same way as described in §III-A (e.g.,
OLLVM-based [41] control flow flattening [45] and junk bytes
insertion between flattened blocks). To ensure the insertion of
junk bytes, we add a bogus control flow (i.e., control flow
that never executes) from the SwitchInst of the dispatcher
block to all inserted junk bytes. This obfuscation scheme
ensures that junk bytes are inserted before almost all basic
blocks, while the control flow information is stripped by the
flattening. Therefore, disassemblers’ anti-obfuscation ability
can be thoroughly tested. To obtain the groundtruth, we modify
the LLVM assembler [46] to collect the starting addresses of
all valid instructions.

Baseline disassemblers. We firstly choose DeepDi [79] as the
state-of-the-art disassembly approach based on machine learn-
ing. We also choose Angr [63] because it is the best industrial
disassembler according to the measurement of [54]. However,
we only use its CFGFast feature instead of CFGEmulated
that leverages the symbolic execution, because it throws an
exception when applied on our obfuscated binaries. We also
chose Ddisasm [32] as a heuristic-based baseline. There are
also some disassemblers [19], [69] aiming to tackle obfusca-
tion. We did not include them because the obfuscations they
handle is different from the one used in this benchmark. More-
over, according to the maintainer of BINSEC, BB-DSE [19]
is unavailable now. Besides, we did not include XDA [57]
because its fine-tuned disassembler model is not released,
while according to the experiment of DeepDi, they demonstrate
similar results, so DeepDi alone is already representative
enough for the machine learning approaches.

Results. The results are shown in Table II, which show that
DISASLLM outperforms other state-of-the-art disassemblers.
Angr and Ddisasm are even unable to correctly disassemble
most of the instructions. DeepDi, the second-best disassem-
bler, achieves a decent score on decoding all instructions but
fails to decode the first instructions following the junk byte
regions. Moreover, we find that DISASLLM achieves higher
precision than the recall in general, which means some correct
instructions are not decoded. We try to explain this results
using intermediate metrics in §VII-B.

B. Intermediate Metrics of Classifier Model (RQ2)

In this part, we demonstrate the effectiveness of the LLM-
based model when it is used by the different components of
DISASLLM. We consider three DISASLLM components that
utilizes the classifier: disassembly checking, reverse infilling
and forward infilling. Each of these components can be further
separated into two components: prefilter component, which
checks multiple instructions at once, and single component,
which checks each instruction one by one (except for reverse
infilling, because there can be multiple instructions ending at
the same address). Therefore, we have 3×2 = 6 components in
total. The details about these components have been described
previously in §V-B and §V-C.
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TABLE II: The results of comparing DISASLLM to other disassembler counterparts.

Disassembler Type Metrics curl diffutils GMP ImageMagick libmicrohttpd libtomcrypt OpenSSL PuTTy SQLite zlib

DisasLLM

All
Precision 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.98

Recall 0.92 0.94 0.95 0.92 0.94 0.94 0.91 0.93 0.93 0.94
F1 0.95 0.96 0.96 0.95 0.96 0.96 0.95 0.96 0.96 0.96

Junk
Precision 0.94 0.92 0.90 0.89 0.92 0.91 0.94 0.93 0.94 0.92

Recall 0.91 0.89 0.89 0.86 0.91 0.89 0.87 0.89 0.90 0.91
F1 0.92 0.91 0.89 0.87 0.91 0.90 0.90 0.91 0.92 0.92

DeepDi

All
Precision 0.95 0.96 0.96 0.96 0.96 0.97 0.96 0.97 0.96 0.96

Recall 0.93 0.93 0.92 0.94 0.93 0.95 0.94 0.96 0.94 0.93
F1 0.94 0.94 0.94 0.95 0.94 0.96 0.95 0.96 0.95 0.95

Junk
Precision 0.60 0.62 0.65 0.57 0.59 0.67 0.63 0.65 0.61 0.58

Recall 0.51 0.51 0.48 0.52 0.47 0.52 0.55 0.58 0.52 0.47
F1 0.55 0.56 0.55 0.54 0.52 0.59 0.59 0.61 0.56 0.52

Angr

All
Precision 0.68 0.67 0.66 0.75 0.70 0.75 0.73 0.78 0.72 0.71

Recall 0.74 0.71 0.77 0.80 0.73 0.84 0.79 0.82 0.75 0.74
F1 0.71 0.69 0.71 0.77 0.71 0.80 0.76 0.80 0.73 0.72

Junk
Precision 0.05 0.05 0.04 0.04 0.05 0.04 0.07 0.10 0.06 0.05

Recall 0.10 0.10 0.09 0.09 0.09 0.09 0.14 0.18 0.11 0.09
F1 0.07 0.07 0.05 0.06 0.06 0.06 0.10 0.13 0.08 0.06

DDisasm

All
Precision 0.84 0.86 0.81 0.85 0.84 0.82 0.87 0.92 0.87 0.86

Recall 0.23 0.21 0.19 0.12 0.18 0.22 0.33 0.41 0.26 0.17
F1 0.37 0.34 0.31 0.22 0.30 0.35 0.48 0.56 0.40 0.29

Junk
Precision 0.25 0.29 0.17 0.27 0.26 0.16 0.31 0.42 0.32 0.31

Recall 0.08 0.08 0.05 0.05 0.07 0.08 0.14 0.18 0.10 0.07
F1 0.12 0.12 0.08 0.09 0.11 0.10 0.19 0.25 0.15 0.12

Therefore, for each of the components, when it uses the
LLM-based classifier model, we record the addresses of the
instructions being checked and the result probability values,
along with the annotation of the component that requests the
classification. Based on the ground truth valid instruction ad-
dresses, we can then use these records to compute the metrics
about the validity identification of each of the components.
To be specific, we count the number of false positives, false
negatives, true positives and true negatives. The results are
presented in Table III.

Firstly, we can find that during the process of checking
the decoded instructions in the initial disassembly results,
the prefilter step is already capable of identifying most of
the instructions, with a very high accuracy. By contrast, the
remaining instructions that are then checked one by one are
harder to correctly classify, which aligns with our assumptions.
Additionally, false negatives are generally higher than the false
positives, especially in the prefilter step. We believe this also
explains the metrics in Table II where the recall values of
DISASLLM are lower than the precision values.

During the process of fixing the disassembly, the scenarios
are almost similar for both reverse infilling and forward infill-
ing: the prefilter (i.e., checking multiple decoded instructions
as fixing candidates at once) handles most of the instructions
correctly, while the single-instruction step performs worse.
Moreover, there are many true negatives in the prefilter of
forward infilling, because most of the decoded instructions in
the invalid regions are invalid ones, and they are successfully
identified when multiple instructions are checked simultane-
ously.

These intermediate results suggest that the model indeed
works with high accuracy when used by the different compo-
nents of DISASLLM. However, since there are still consider-
able false positives and false negatives, the model capability
can be further improved by better fine-tuning.

C. Capability of Fine-tuned Model (RQ3)

In this part, we conduct an ablation study investigating the
capability of our fine-tuned model when it is used alone, and
compare its capability with some other LLM baselines. To be
specific, we utilize a naive approach for disassembly: we use
LLM model to check the validity of instruction decoded at
each address in the code region, and output all addresses that
are considered as valid.

However, LLM does not obtain enough information if we
only provide the decoded instruction at the address to be
checked. Therefore, we also provide the surrounding instruc-
tions of start addresses within the range a − 50 and a + 50,
where a is the address to be checked. We utilize two ap-
proaches to provide the surrounding instructions: 1) We decode
all addresses within the range (i.e., superset disassembly) and
provide all of them to LLM. 2) We conduct linear disassembly
starting from a − 50 and a to get the instructions from both,
and show the possible overlap using the format we mentioned
in §V-E2. Note that these two approaches both ensure the
instruction to be checked at a is decoded.

To enable decoder LLM model to conduct such task, we
leveraged the prompt engineering. In the prompt, we introduce
the task of identifying the validity of the instruction by
informing LLM how instruction can be invalid, the format
of the provided assembly snippet, and how the snippet is
disassembled (i.e., superset or linear). Finally, we provide the
disassembled snippet and ask if a particular instruction is valid,
and the response is limited to generate only one character: ‘Y’
for valid or ‘N’ for invalid.

We chose Codestral 22B [3] and Llama3 8B [15] as the
baseline models for this task, because Codestral is the current
state-of-the-art open-weight code model, and Llama3 8B is
the model that DISASLLM is fine-tuned on. We also tested
Meta LLM Compiler [26], the state-of-the-art model that has
been trained on assembly text. However, the model fails to
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TABLE III: The metrics of LLM-based validity classifier when being used by the components of DISASLLM.

Component Metrics curl diffutils GMP ImageMagick libmicrohttpd libtomcrypt PuTTy SQLite zlib

Checking

Prefilter

FP 835 178 917 5440 262 544 567 1251 114
FN 8190 968 2894 36672 1596 4393 7542 14358 653
TP 206261 29409 130508 858529 51269 145085 164896 341318 21703
TN 250456 36194 150463 800430 54954 117969 140301 372861 22050

Single

FP 3266 530 2540 15554 749 1897 2137 4890 309
FN 5138 527 1659 22804 895 4524 4667 9335 552
TP 20832 2630 8345 116998 5445 12656 18127 40394 2098
TN 2746 362 1586 9934 550 1295 1362 3940 199

Reverse

Prefilter

FP 502 103 355 1793 155 246 424 879 65
FN 634 132 56 1965 192 98 427 863 34
TP 41177 6101 20114 120717 9175 17877 20152 62408 3738
TN 75268 10484 36607 255438 16249 36731 36490 110532 6969

Single

FP 357 52 232 1380 91 166 246 750 40
FN 222 67 52 963 58 105 164 403 12
TP 2423 350 713 14648 596 2540 1710 4003 194
TN 586 72 287 2896 112 284 413 1024 52

Forward

Prefilter

FP 4165 597 1367 10025 928 1528 3345 7341 381
FN 7541 719 1357 24308 1062 2006 3602 10357 327
TP 20796 3073 14380 61932 4697 8103 9632 29355 1889
TN 236686 30890 149741 836289 49908 111068 120236 335712 19462

Single

FP 514 75 330 1840 108 285 357 774 45
FN 926 164 226 3015 163 483 610 1932 63
TP 1131 227 293 3764 198 465 650 2035 71
TN 1551 209 811 5166 318 731 897 2384 145

TABLE IV: Execution speed of DISASLLM.

curl diffutils GMP ImageMagick libmicrohttpd libtomcrypt OpenSSL PuTTy SQLite zlib
Time (seconds) 11588.09 1595.89 6450.46 44274.76 2490.57 5625.90 75514.68 6508.85 18290.14 990.12

Size (bytes) 1616997 227299 1040736 6605067 372941 1052911 8343974 1118449 2531104 155647
Speed (bytes/second) 139.54 142.43 161.34 149.18 149.74 187.15 110.49 171.84 138.39 157.20

follow our instruction of answering only ‘Y’ or ‘N’, so we
exclude it from our results. We did not include any online
proprietary models, since the task requires so many tokens
that the costs would be too high. Additionally, we also include
DeepDi, because it also provides API that identifies if an offset
is the start of a valid instruction given the byte sequence. Note
that the DeepDi here works differently than the DeepDi in
Table table II, where it checks all addresses at once, while
the DeepDi only checks one address for each classification.
For fine-tuned model of DISASLLM, we only tested the linear
disassembly, because our model is not trained on the dataset of
superset disassembly, which clearly cannot give decent results.
Since checking all possible addresses can be too slow for LLM,
we only consider the first page of the code region (i.e., 4096
bytes) of each obfuscated binary.

The results are presented in Table table V with the same
format as Table table II. We mark the subscript L for linear dis-
assembly, and subscript S for superset disassembly. Firstly, we
can find that DISASLLM- where only the LLM-based validity
classifier alone is used to disassemble the binary, produces
worse results than the whole system of DISASLLM presneted
in Table table II. This shows that our disassembly strategy is
not only more efficient but also more effective. However, our
model is still better than DeepDi, whose results are not very
different from those in table II. Additionally, we can find that
directly applying the decoder LLM on such classification task
does not yield good results: they almost identify all instructions
as valid, so precision is too low while the recall is pretty high.
Besides, leveraging superset disassembly does not generate

better results than the linear disassembly, which suggests that
the superset disassembly indeed provides too much redundant
information that is not required by the validity identification.

D. Efficiency of Disassembly (RQ4)

Finally, we measure the efficiency of DISASLLM. We
record the execution time of DISASLLM on each executable
generated in §VII-A and calculate the average processing speed
in “bytes per second”. The batch size M was set to 32 in this
experiment. The results are presented in Table IV.

According to the results, DISASLLM disassembles the
binary in roughly 100+ bytes per second, meaning that an
executable containing millions of bytes (MBs in size) will
need hours to be disassembled. Although this is slower than
some other disassemblers like DeepDi (while still faster than
expensive approaches like symbolic execution-based ones),
DISASLLM has the advantage of effectively handling the
obfuscation and producing more accurate results. We thus
consider it a valuable and practical tradeoff. We leave the
performance optimization as a future work.

VIII. DISCUSSION

Efficiency optimization. Although already optimized using
prefiltering and batching, when disassembling large binary
with millions of bytes, DISASLLM still needs to take many
hours to accomplish the task. To address this issue, one
may suggest not to check all instructions, but instead, if one
instruction is identified as valid, the instructions that must
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TABLE V: The results of using models directly on the disassembly.

Disassembler Type Metrics curl diffutils GMP ImageMagick libmicrohttpd libtomcrypt OpenSSL PuTTy SQLite zlib

DISASLLM-

All
Precision 0.90 0.88 0.88 0.93 0.93 0.92 0.92 0.91 0.92 0.92

Recall 0.92 0.91 0.91 0.89 0.94 0.93 0.87 0.91 0.94 0.97
F1 0.91 0.90 0.89 0.91 0.94 0.92 0.89 0.91 0.93 0.94

Junk
Precision 0.83 0.75 0.85 0.87 0.92 0.79 0.81 0.86 0.90 0.83

Recall 1.00 0.92 1.00 0.95 0.94 0.95 0.87 0.92 0.95 0.96
F1 0.91 0.83 0.92 0.91 0.93 0.86 0.84 0.89 0.93 0.89

DeepDi

All
Precision 0.94 0.97 0.96 0.96 0.96 0.98 0.96 0.94 0.96 0.97

Recall 0.91 0.91 0.95 0.95 0.91 0.93 0.94 0.95 0.97 0.97
F1 0.93 0.94 0.96 0.95 0.93 0.95 0.95 0.95 0.97 0.97

Junk
Precision 0.55 0.68 0.68 0.66 0.60 0.65 0.68 0.59 0.73 0.63

Recall 0.49 0.48 0.66 0.63 0.45 0.44 0.61 0.64 0.79 0.61
F1 0.52 0.56 0.67 0.64 0.52 0.53 0.64 0.61 0.76 0.62

CodestralS

All
Precision 0.28 0.25 0.25 0.25 0.24 0.22 0.27 0.27 0.29 0.25

Recall 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99
F1 0.44 0.39 0.40 0.40 0.39 0.36 0.43 0.42 0.45 0.40

Junk
Precision 0.22 0.18 0.19 0.21 0.18 0.15 0.21 0.22 0.22 0.18

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F1 0.36 0.31 0.31 0.35 0.31 0.26 0.35 0.37 0.36 0.31

CodestralL

All
Precision 0.28 0.26 0.25 0.29 0.29 0.26 0.28 0.28 0.32 0.31

Recall 0.99 1.00 0.99 0.99 1.00 1.00 0.99 1.00 0.98 1.00
F1 0.43 0.41 0.39 0.45 0.45 0.41 0.44 0.44 0.49 0.47

Junk
Precision 0.19 0.18 0.18 0.22 0.20 0.14 0.21 0.20 0.24 0.21

Recall 1.00 1.00 0.99 0.99 0.99 0.99 1.00 0.99 0.99 1.00
F1 0.32 0.31 0.30 0.37 0.33 0.25 0.35 0.33 0.39 0.35

LlamaS

All
Precision 0.30 0.27 0.26 0.32 0.33 0.29 0.33 0.31 0.34 0.34

Recall 0.92 0.95 0.93 0.85 0.90 0.94 0.85 0.90 0.85 0.93
F1 0.45 0.43 0.41 0.47 0.49 0.44 0.47 0.46 0.49 0.49

Junk
Precision 0.24 0.25 0.21 0.28 0.27 0.18 0.30 0.27 0.34 0.27

Recall 0.90 0.95 0.89 0.81 0.86 0.91 0.87 0.87 0.79 0.93
F1 0.38 0.39 0.33 0.42 0.42 0.30 0.44 0.41 0.48 0.42

LlamaL

All
Precision 0.27 0.25 0.24 0.28 0.29 0.25 0.27 0.27 0.31 0.30

Recall 0.97 0.99 0.97 0.93 0.98 0.93 0.94 0.97 0.94 0.97
F1 0.42 0.40 0.39 0.43 0.45 0.39 0.42 0.42 0.46 0.45

Junk
Precision 0.20 0.20 0.18 0.23 0.21 0.15 0.21 0.20 0.25 0.22

Recall 0.96 0.99 0.96 0.94 0.99 0.94 0.96 0.96 0.95 0.97
F1 0.33 0.33 0.30 0.37 0.35 0.26 0.35 0.32 0.39 0.36

follow its control flow should also be valid. However, the
problem of this claim is that the inserted junk bytes can appear
like valid instructions: while decoding them does not affect
the disassembly results since they do not overlap with the real
valid instructions, the instructions following their control flow
may cause such overlap. Thus, it is still necessary to check
all instructions. Another potential approach is to use a smaller
model, such as CodeBERT [31], for prefiltering, so that validity
of each instruction that is obvious even from the perspective
of a small language model can be confirmed first. We leave
this direction as the potential future work.

Valid overlapping instructions. In general, even in the obfus-
cated binary, two overlapping instructions cannot be both valid.
An exception case, also handled by CoDisasm [22], involves
a jmp instruction jumping into itself. For example, consider
the disassembly of the byte sequence eb ff c9, where eb
ff is decoded to jmp +1 with target address pointing to ff
c9, which is decoded to dec ecx. Since the two overlapping
instructions are both executed at runtime, they are both valid.
In principle, DISASLLM is capable of handling this case if
such pattern occurs in the initial disassembly graph, as long
as the model has learned this pattern, because our disassembly
method does not intentionally resolve all overlapped blocks.
However, if such pattern occurs in the invalid region which is
going to be fixed, DISASLLM is not able to disassemble this
pattern correctly because we assume no overlap in the invalid

region when it is being fixed.

Another more extreme case involves hiding all real instruc-
tions into immediate numbers of another set of valid instruc-
tions [36]. Since such obfuscation technique aims to defeat
the self-repairing feature of the disassembly, current design
of DISASLLM cannot handle this scenario. A potential future
extension that may allow DISASLLM to handle this involves
training another classifier to identify if immediate number of
a valid instruction may hide another instruction, and if the
classifier says yes, DISASLLM can start an extra disassembly
starting from the immediate number of the instruction and
check if they are valid.

Combining with traditional disassembly techniques. Cur-
rently, our initial disassembly process only leverages the most
basic traditional disassembly approach, which does not include
resolving target addresses of an indirect branch, currently
handled by symbolic execution [63] or heuristic-based ap-
proach [54]. These techniques can also be applied upon our
initial disassembly algorithm to get a more comprehensive
initial disassembly graph.

IX. RELATED WORK

A. Disassembly and Deobfuscation

Disassembly of normal binary. Commonly-used industrial
disassemblers include IDA [5], Ghidra [4], Angr [63], Binary
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Ninja [2], Radare2 [9], BAP [1] and objdump [8]. According to
investigations of previous works [54], [16], these disassemblers
generally leverage linear or/and recursive disassembly, along
with additional algorithms and heuristics to improve the effec-
tiveness. DISASLLM is similar to them in the sense that the
algorithm is our LLM-based method. Datalog disassembly [32]
leverages datalog, a declarative logic programming language,
to implement the algorithm and heuristics for binary disas-
sembly, such as the heuristic to resolve overlapping blocks.
Probabilistic disassembly [51] computes probability for each
instruction to be valid based on some heuristics known as
hints. By contrast, DISASLLM also computes such probability
but DISASLLM relies on LLM-based approach instead of
any heuristic. The disassembler of SAFER [59] also leverages
a probability-based approach combined with static analysis
using a prioritized error correction algorithm. XDA [57] pre-
trained an encoder transformer with dataset of byte sequences
in the compiled binaries, using masked token prediction as the
training objective, which was then fine-tuned for instruction
address identification. DISASLLM also leverages a similar
procedure, but it was trained on decoded instructions instead
of raw bytes, which contain clearer semantic information for
the model to learn. DeepDi [79] disassembles all possible
addresses of the code region to construct an instruction flow
graph for identifying the validity of each instruction using a
graph neuron network. However, as we have demonstrated, its
resilience to obfuscated code is limited.

Disassembly of obfuscated binary. Even if disassembling
normal binary is already a challenging task, some previous
works also aimed to disassemble obfuscated binary. An early
work [44] proposes a method to statically disassemble obfus-
cated binary, which mainly relies on statistical and heuristic
methods to exclude invalid instructions and find valid instruc-
tions. Another early work [43] leverages the decision tree,
through feature engineering on the decoded instructions, to
detect invalid disassembly caused by the obfuscation. The
opaque predicates detective [69] applies a series of heuristics
to identify the unreachable branch of an opaque predicate that
causes desynchronization of the disassembly. CoDisasm [22]
aims to extract and disassemble self-modifying obfuscated
binary. Their disassembly approach relies on the dynamic
trace and is resilient to obfuscation technique containing over-
lapping instructions that are both valid. Backward-Bounded
DSE [19] utilizes the dynamic trace for concolic execution in
order to decide infeasible paths, which provide complementary
information for their sparse disassembly method aiming to
be resilient to opaque predicate and call stack tampering.
However, these two works above both heavily depend on
dynamic trace, so uncovered paths that in general constitute
most parts of the program cannot benefit much from these
methods, because achieving a high program coverage is a
problem known to be hard. DISASLLM, on the other hand,
not only performs well without any execution trace, but also
can benefit from execution trace by providing them as priorly
known valid instruction addresses.

Other deobfuscation techniques. Besides defeating obfusca-
tion causing disassembly desynchronization, other obfuscation
techniques and approaches to deobfuscate them also exist. A
generic deobfuscation approach [78] leverages taint propaga-
tion and dependency analysis on the execution trace of an

obfuscated executable to pinpoint instructions with semantic
significance. Another work [77] proposes methods to improve
the effectiveness of symbolic execution on the obfuscated code.
LOOP [52] also utilizes concolic execution on the execution
trace to identify the opaque predicates in the trace. All of these
works similarly require a (symbolic) execution trace of the
obfuscated program, unlike DISASLLM.

B. LLM for Program Analysis

Recent advancement of the large language model has con-
tributed significantly to the field of program analysis, including
fuzzing [50], [29], [14], [74], static bug detection [23], [47],
[64], [65], [72] and code repair [75], [40], [30], [55], [39].

Application on reverse engineering. A pioneering measure-
ment study [56], by prompting to ask LLM questions about
the decompiled code, firstly investigates the ability of LLM to
help reverse engineering. DeGPT [35] follows such direction
by designing a prompt system to optimize the output from the
decompiler, along with a checker that ensures the optimized
output from LLM has the same semantic as the original
decompiled code. LLM4Decompile [66] fine-tunes the LLM to
aid the decompilation task. The model supports both decompi-
lation from assembly to C code directly and refinement of the
decompiled code from Ghidra to produce better decompiled
code. Nova [38] utilizes hierarchical attention and contrastive
learning to improve LLM’s capability on understanding and
generating the assembly code. BinaryAI [37] leverages LLM
for the task of software composition analysis by computing
the embeddings of functions in the binary and matching them
with source functions of the third-party libraries. LATTE [49]
improves the binary taint analysis with LLM by automating
the manual components of taint analysis, using static analysis
and prompt engineering. Although similar to DISASLLM,
these works all try to improve reverse engineering by the
usage of LLM, they contribute to the different aspects of the
reverse engineering. By contrast, to the best of our knowledge,
DISASLLM is the first work that leverages LLM for the
disassembly task.

X. CONCLUSION

In this work, we proposed DISASLLM, an end-to-end
system for disassembling obfuscated binary executables by
effectively leveraging the capability of large language model.
DISASLLM consists of a fine-tuned LLM-based validity clas-
sifier aiming to identify if decoded instructions are correct,
and a disassembly strategy that utilizes such classifier to
disassemble the obfuscated executable in an end-to-end man-
ner. According to our evaluation, the approach is effective
on the disassembly task compared to other state-of-the-art
disassemblers, showing the potential of our method. We believe
that our research has opened a new direction in leveraging
LLM on the disassembly task.
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